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PREFACE 
 

Measurement uncertainty is the doubt that exists about a measurement’s result.  Every 

measurement - even the most careful - always has a margin of doubt.  Evaluating the uncertainty 

in the measurement process determines the “goodness” of a measurement.  

This Handbook provides tools for estimating the quality of measurements. Measurement 

uncertainty is an estimation of the potential error in a measurement result that is caused by 

variability in the equipment, the processes, the environment, and other sources.  Every element 

within a measurement process contributes errors to the measurement result, including 

characteristics of the item being tested.  Evaluation of the measurement uncertainty characterizes 

what is reasonable to believe about a measurement result based on knowledge of the 

measurement process.  It is through this process that credible data can be provided to those 

responsible for making decisions based on the measurements. 

In this context, it becomes apparent the more critical the application, the greater the need for 

measurement quality assurance.  Measurement uncertainty analysis can be used to mitigate risks 

associated with noncompliance of specifications and/or requirements which are validated 

through measurement.  Although the tools are available, often the overall uncertainty 

encountered during the measurement process is not assessed, controlled, or even fully 

understood.  The principles and methods recommended in this Handbook may be used as the 

fundamental building blocks for a quality measurement program.  From this foundation, good 

measurement data can support better decisions.  

Ensuring reliable and accurate products and services justifies a measurement assurance program 

as a cost benefit - providing the assurance of safety through measurement quality makes it 

imperative. 

A lack of standardization for quantified measurement uncertainty estimation often causes 

disagreements and confusion in trade, scientific findings, and legal issues.  The principles and 

methods contained in this Handbook are based, and in some instances, expand on the 

International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in 

Measurement (GUM), the international standardized approach to estimating uncertainty. 

ANSI/NCSL Z540.2-1997 (R2007), U.S. Guide to the Expression of Uncertainty in 

Measurement (U.S. Guide), is the U.S. adoption of the ISO GUM.   Additional guidance on 

estimating measurement uncertainty is available in many engineering discipline-specific 

voluntary consensus standards and complimentary documents.  However, for consistent results, it 

is imperative that the quantification of measurement uncertainty be based on the ISO GUM.  
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EXECUTIVE SUMMARY 
 

Measurements are an important aspect of decision making, communicating technical 

information, establishing scientific facts, monitoring manufacturing processes and maintaining 

human and environmental health and safety.  Consequently, industries and governments spend 

billions of dollars annually to acquire, install and maintain measurement and test equipment 

(MTE).   

 

The more critical the application, the greater the need for measurement quality assurance.  MTE 

accuracy is a key aspect of measurement quality.  However, the overall uncertainty encountered 

during the measurement process is not often assessed and controlled.   

 

The assessment and control of measurement uncertainty presupposes the ability to develop 

reliable uncertainty estimates.  This document provides an in-depth coverage of key aspects of 

measurement uncertainty analysis and detailed procedures needed for developing such estimates.   

 

Chapter 1 presents the purpose and scope of this document and discusses principal differences 

between “classical” engineering methods and more recent methods developed to provide an 

international consensus for the expression of uncertainty in measurement.  

 

Chapters 2 and 3 provide foundational concepts and methods for estimating measurement 

uncertainty.  Key concepts and methods are summarized below.  Chapter 4 discusses how 

manufacturer specifications are obtained, interpreted and applied in uncertainty estimation.   

 

Chapters 5 through 7 present procedures for implementing key concepts and methods, using 

detailed direct measurement, multivariate measurement and measurement system examples.  

Chapter 8 provides guidance and illustrative examples for estimating the uncertainty in the 

measurement result obtained from four common calibration scenarios. Chapter 9 presents an 

advanced topic for estimating uncertainty growth over time.  

 

Appendix A provides definitions for terms employed throughout this document.  The terms and 

definitions are designed to be understood across a broad technology base.  Where appropriate, 

terms and definitions have been taken from internationally recognized standards and guidelines. 

 

Appendices B through D provide in-depth development of concepts and methods described in 

Chapters 2 and 3.  Appendix E provides an advance topic on applying Bayesian analysis to 

estimate unit-under-test (UUT) and MTE attribute biases and in-tolerance probabilities during 

calibration.  Appendices F through I provide additional analysis examples.  

 

Key Uncertainty Analysis Concepts and Methods 

Measurement Error and Uncertainty 

A measurement is a process whereby the value of a quantity is estimated.  All measurements are 

accompanied by error.  Our lack of knowledge about the sign and magnitude of measurement 

error is called measurement uncertainty.  Measurement errors are random variables that follow 

probability distributions.  A measurement uncertainty estimate is the characterization of what we 

know statistically about the measurement error.  Therefore, a measurement result is only 

complete when accompanied by a statement of the uncertainty in that estimate. 
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Uncertainty Analysis  

Uncertainty is calculated to support decisions based on measurements.  Therefore, uncertainty 

estimates should realistically reflect the measurement process.  In this regard, the person tasked 

with conducting an uncertainty analysis must be knowledgeable about the measurement process 

under investigation.   

 

To facilitate this endeavor, the measurement process should be described in writing.  Such 

documentation should clearly specify the measurement equipment used, the environmental 

conditions during measurement, and the procedure used to obtain the measurement.   

 

The general uncertainty analysis procedure consists of the following steps: 

 

1. Define the Measurement Process 

2. Identify the Error Sources and Distributions 

3. Estimate Uncertainties 

4. Combine Uncertainties 

5. Report the Analysis Results 

 

The first step in any uncertainty analysis is to identify the physical quantity whose value is 

estimated via measurement. This quantity, sometimes referred to as the “measurand,” may be a 

directly measured value or indirectly determined through the measurement of other variables.  It 

is also important to describe the test setup, environmental conditions, technical information about 

the instruments, reference standards, or other equipment used and the procedure for obtaining the 

measurement(s).  This measurement process information is used to identify potential sources of 

error. 

 

Measurement process errors are the basic elements of uncertainty analysis.  Once these 

fundamental error sources have been identified, then the appropriate distributions are selected to 

characterize the statistical nature of the measurement errors.  

 

With a basic understanding of error distributions and their statistics, we can estimate 

uncertainties.  The spread in an error distribution is quantified by the distribution’s standard 

deviation, which is the square root of the distribution variance.  Measurement uncertainty is 

equal to the standard deviation of the error distribution. There are two approaches to estimating 

measurement uncertainty.  Type A estimates involve data sampling and analysis.  Type B 

estimates use technical knowledge or recollected experience of measurement processes. 

 

Because uncertainty is equal to the square root of the distribution variance, uncertainties from 

different error sources can be combined by applying the “variance addition rule.”  Variance 

addition provides a method for correctly combining uncertainties that accounts for correlations 

between error sources.  When uncertainties are combined, it is also important to estimate the 

degrees of freedom for the combined uncertainty.  Generally speaking, degrees of freedom 

signify the amount of information or knowledge that went into an uncertainty estimate. 

 

Reporting Uncertainty 

When reporting the results of an uncertainty analysis, the following information should be 

included: 
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1. The estimated value of the quantity of interest and its combined uncertainty and 

degrees of freedom. 

2. The mathematical relationship between the quantity of interest and the measured 

components (applies to multivariate measurements).  

3. The value of each measurement component and its combined uncertainty and 

degrees of freedom. 

4. A list of the measurement process uncertainties and associated degrees of freedom 

for each component, along with a description of how they were estimated. 

5. A list of applicable correlation coefficients, including any cross-correlations 

between component uncertainties.  

 

It is also a good practice to provide a brief description of the measurement process, including the 

procedures and instrumentation used, and additional data, tables and plots that help clarify the 

analysis results. 
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CHAPTER 1:  INTRODUCTION 
Concepts and methods presented in this document are consistent with those found in the 

International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in 

Measurement  (GUM).1   

 

Uncertainty is calculated to support decisions based on measurements.  Therefore, uncertainty 

estimates should realistically reflect the measurement process.  In this regard, the person tasked 

with conducting an uncertainty analysis must be knowledgeable about the measurement process 

under investigation.  

  

Note:  In this document, the terms standard uncertainty and uncertainty are used 

interchangeably. 

 

To facilitate this endeavor, the measurement process should be described in writing.  This write-

up should clearly specify the measurement equipment used, the environmental conditions during 

measurement, and the procedure used to obtain the measurement.   

 

1.1 Purpose 

While the GUM provides general rules for analyzing and communicating measurement 

uncertainty, it does not provide detailed procedures or instructions for evaluating specific 

measurement processes.2  In addition, new methods have been developed over the past several 

years that enhance the methodology of the GUM.  

 

This document provides a recommended practice that clearly explains key concepts and 

principles for estimating and reporting measurement uncertainty.  This document also includes 

advanced methods that extend the GUM’s guidance on estimating measurement uncertainty. 

 

1.2 Scope 

The analysis methods outlined in this document provide a comprehensive approach to estimating 

measurement uncertainty.  Basic guidelines are presented for estimating the uncertainty in the 

value of a quantity for the following measurement alternatives: 

 

 Direct Measurements – The value of a quantity is obtained directly by 

measurement and not determined indirectly by computing its value from the 

values of other variables or quantities. 

 Multivariate Measurements – The value of the quantity is based on measurements 

of more than one attribute or quantity. 

 Measurement Systems – The value of a quantity is measured with a system 

comprised of component modules arranged in series. 

 

The structured, step-by-step uncertainty analysis procedures described herein address the 

important aspects of identifying measurement process errors and using appropriate error models 

and error distributions.  Advanced topics cover estimating degrees of freedom for Type B 

                                                 
1 Throughout this document, the term GUM refers to ISO Guide to the Expression of Uncertainty in Measurement and  

ANSI/NCSL Z540-2-1997, the U.S. Guide to the Expression of Uncertainty in Measurement. 

2 See section 1.4 of the GUM. 
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uncertainties, uncertainty analysis for alternative calibration scenarios, uncertainty growth over 

time and Bayesian analysis. 

 

Examples contained in the main body of this document provide detailed step-by-step analysis 

procedures that re-enforce important principles and methods.  Analysis examples included in the 

appendices address real-world measurement scenarios and follow a standardized format to 

clearly convey the necessary information and concepts used in each analysis. 

 

1.3 Background 

The GUM was developed to provide an international consensus for the expression of uncertainty 

in measurements.  This entailed the development of an unambiguous definition of measurement 

uncertainty and the application of rigorous mathematical methods for uncertainty estimation. 

 

Over the past twenty years or so, various uncertainty analysis standards, guides and books have 

been published by engineering organizations.  Examples of uncertainty analysis standards and 

other published material commonly used in the U.S. engineering community are listed below.   

 

 Test Uncertainty, ASME PTC 19.1-1998 (reaffirmed 2004). 

 Measurement Uncertainty for Fluid Flow in Closed Conduits, ANSI/ASME 

MFC-2M-1983 (reaffirmed 2001). 

 Assessment of Wind Tunnel Data Uncertainty, AIAA Standard S-071-1995. 

 Dieck, R.H.: Measurement Uncertainty Methods and Applications, 3rd Edition, 

ISA 2002. 

 Coleman, H. W. and Steele, W. G.: Experimentation and Uncertainty Analysis for 

Engineers, 2nd Edition, John Wiley & Sons, 1999. 

 

Although many of these uncertainty analysis references have been updated or reaffirmed in 

recent years, the methods they espouse are distinctly different from those presented in the GUM.  

Consequently, confusion persists in the reporting and comparison of uncertainty estimates across 

technical organizations and disciplines. 

 

The methods and concepts presented in this document follow the GUM and are based on the 

properties of measurement error and the statistical nature of measurement uncertainty.  

Publications consistent with the GUM are listed in the references section of this document.   

 

Key differences are summarized in Table 1-1 to illustrate how the methods and concepts 

presented in this document supplant pre-GUM techniques.  The methods and concepts presented 

in this document are intended to provide necessary clarification about the topics introduced thus 

far, as well as other uncertainty analysis issues.  

 

1.4   Application 

The established best practices, procedures and illustrative examples contained in this document 

provide a comprehensive resource for all technical personnel responsible for estimating and 

reporting measurement uncertainty. 
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Table 1-1.  Comparison of Pre-GUM and GUM Methodologies 

Topic Pre-GUM GUM 

Measurement 

Error 

Measurement errors are categorized as either random or 

systematic.3  In this context, random error is defined as the 

portion of the total measurement error that varies in the short-

term when the measurement is repeated.  Systematic error is 

defined as the portion of the total measurement error that 

remains constant in repeat measurements of a quantity. 

The GUM refers only to errors that can occur in a given 

measurement process and does not differentiate them as random or 

systematic.  Measurement process errors can include repeatability, 

operator bias, instrument parameter bias, resolution error, errors 

arising from environmental conditions, or other sources.   

 

Additionally, each measurement error, regardless of its origin, is 

considered to be a random variable that can be characterized by a 

probability distribution. 

Measurement 

Uncertainty 

Many pre-GUM references propose that the uncertainty due 

to random error be computed by multiplying the standard 

deviation of a sample of measured values by the Student’s t-

statistic4 with 95% confidence level, t95,. 

95,ranx xu t s  or  95,ranx xu t s . 

The standard deviation, sx, of a sample of data is 

 
2

1

n
k

x
k

x x
s




   

and the standard deviation in the mean value xs  is  

x
x

s
s

n
  

The GUM supplants systematic and random uncertainties with 

standard uncertainty,5 which is a statistical quantity equivalent to 

the standard deviation of the error distribution.  

 

By definition, the standard deviation is the square-root of the 

distribution variance.6  Therefore, the uncertainty, ux, in a 

measurement, x = xtrue + x, is  

var( ) var( )

var( ).

x true x

x

u x x 



  


 

In the above equation, x is the measured value, xtrue is the unknown 

true value of the measurand at the time of measurement, x is the 

measurement error and var(.) is the variance operator. 

 

In this regard, uncertainty is not considered to be a  limit or 

interval.  The standard uncertainty of a measurement error is 

determined from Type A or Type B estimates.   

                                                 
3 In the pre-GUM context, the terms random and precision are often used interchangeably, as are the terms systematic and bias. 

4 The Student’s t-statistic and confidence level are discussed further in section 2.6.1. 

5 In this document, the terms standard uncertainty and uncertainty are used interchangeably. 

6 A mathematical definition of the distribution variance is presented in section 2.4. 
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Topic Pre-GUM GUM 

where n is the sample size, xk is the kth measured value, x  is 

the sample mean value and  is the degrees of freedom, equal 

to n-1. 

 

Topic Pre-GUM GUM 

Measurement 

Uncertainty 

(continued) 

These uncertainties, often expressed by the symbol U95, are 

more reflective of confidence limits or expanded 

uncertainties.7 

 

Pre-GUM references also state that the uncertainty due to 

systematic error or bias is expressed as 

biasu B   

where B is based on past experience, manufacturer 

specifications, or other information.  This uncertainty is also 

more reflective of confidence limits or an expanded 

uncertainty.  

Type A uncertainty estimates are obtained by the statistical 

analysis of a sample of measurements.  Type B uncertainty 

estimates are obtained by heuristic means such as past experience, 

manufacturer specifications, or other information. 

Combined 

Uncertainty 

Combining random and systematic uncertainties has been a 

major issue, often subject to heated debate.  The view 

supported by many data analysts and engineers was to simply 

add the uncertainties linearly (ADD). 

95ADD
xs

u B t
n

   

The view supported by statisticians and measurement science 

professionals was to combine them in root sum square (RSS).  

2

2
95RSS

xs
u B t

n
 

 
 
 

 

Since elemental uncertainties are equal to the square-root of the 

distribution variance, the variance addition rule is used to combine 

uncertainties from different error sources. 

 

To illustrate the variance addition rule, consider the measurement 

of a quantity x that involves two error sources 1 and 2. 

x =  xtrue + 1 + 2  

The uncertainty in x is obtained from 

 
1 2 1 2

1 2 1 2

var( ) var( )

var( ) var( ) 2 cov( , )

x trueu x    

   

    

  
 

                                                 
7 Confidence limits and expanded uncertainty are also discussed in section 2.6.1. 
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Topic Pre-GUM GUM 

A compromise was eventually proposed8 in which either 

method could be used as long as the following constraints 

were met: 

 

where the covariance term, cov(1, 2), is the expected value of the 

product of the deviations of 1 and 2 from their respective means.  

The covariance of two independent variables is zero.  The 

covariance can be replaced with  

 

Topic Pre-GUM GUM 

Combined 

Uncertainty 

(continued) 

 

a. The elemental random uncertainties and the 

elemental systematic uncertainties are 

combined separately. 

b. The total random uncertainty and total 

systematic uncertainty be reported separately. 

c. The method used to combine the total random 

and total systematic uncertainties are stated. 

 

Ironically, it was also recommended that the RSS method be 

used to combine the elemental random uncertainties, si, and 

the elemental systematic uncertainties, Bi. 

1/ 2
2

1

1 K

i
i

s s
n 

 
 
  

           

1/ 2
2

1

K

i
i

B B


 
 
  

 

After publication of the GUM, most uncertainty analysis 

references state that the total random and total systematic 

uncertainties also be combined in RSS.  In many instances, 

the Student’s t-statistic, t95, is set equal to 2 and uRSS is 

computed to be  

1,2 1 2 1 2cov( , )u u    

where 1,2 is the correlation coefficient for 1 and 2 and  

1 1var( )u                   2 2var( )u  . 

Therefore, the uncertainty in x can be expressed as  

2 2
1 2 1,2 1 22xu u u u u   . 

Since correlation coefficients range from minus one to plus one, 

this expression provides a more general, mathematically rigorous 

method for combining uncertainties.   

 

For example, if 1,2 = 0 (i.e., statistically independent errors), then 

the uncertainties are combined using RSS.  If 1,2 = 1, then the 

uncertainties are added.  If 1,2 = -1, then the uncertainties are 

subtracted.  

                                                 
8 Abernathy, R. B. and Ringhauser, B.: "The History and Statistical Development of the New ASME-SAE-AIAA-ISO Measurement Uncertainty Methodology," 

AIAA/SAE/ASME/ASEE Propulsion Conference, 1985. 
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Topic Pre-GUM GUM 

2

2
2RSS

s
u B

n
 

 
 
 

 

Unfortunately, this consensus approach does not eliminate 

the problems associated with using expanded uncertainties or 

multiples of standard deviations. 

Degrees of 

Freedom 

Prior to the GUM, there was no way to estimate the degrees 

of freedom for uncertainties due to systematic error.  

Consequently, there was no way to compute the degrees of 

freedom for the combined uncertainty.   

 

Equation G.3 of the GUM  

 

22

2

1 ( ) 1 ( )

2 2 ( )( )

u x u x

u xu x







 
 
 
 

 

 

Topic Pre-GUM GUM 

Degrees of 

Freedom 

(continued) 

 provides a relationship for computing the degrees of freedom for a 

Type B uncertainty estimate where 2[u(x)] is the variance in the 

uncertainty estimate, u(x), and u(x) is the uncertainty in the 

uncertainty estimate.9   

 

Since publication of the GUM, a methodology for determining 

2[u(x)] and computing the degrees of freedom for Type B 

estimates has been developed.10 

 

When uncertainties are combined, it is important to estimate the 

degrees of freedom for the total uncertainty.  The GUM utilizes the 

Welch-Satterthwaite formula to estimate the effective degrees of 

freedom, eff, for the combined uncertainty.  

                                                 
9 This equation assumes that the underlying error distribution is normal. 

10 Castrup, H.: “Estimating Category B Degrees of Freedom,” presented at the 2000 Measurement Science Conference, January 21, 2001. See also Appendix D. 
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Topic Pre-GUM GUM 

4
*

4 4

1

T
eff

n
i i

i i

u

a u








 

In the above equation, ui and i are the uncertainties and associated 

degrees of freedom for n error sources, ai are sensitivity 

coefficients and the combined or total uncertainty uT* is computed 

assuming no error source correlations. 

*

2 2

1
T

n

i i
i

a uu


   

Confidence 

Limits 

In pre-GUM references, U95 is employed as an equivalent 

95% confidence limit 

95 95x U true value x U     

The combined or total uncertainty, uT, and degrees of freedom, eff, 

can be used to establish the upper and lower limits that contain the 

true value (estimated by the mean value x ), with some specified 

confidence level, p.  Confidence limits are expressed as  

 

 

Topic Pre-GUM GUM 

Confidence 

Limits 

(continued) 

where 

2

2
95 95

s
U B t

n
 

 
 
 

 

 / 2, / 2,eff effT Tx t u true value x t u        

where  = 1- p and the t-statistic, t/2eff, is a function of both the 

degrees of freedom and the confidence level. 

 

The GUM introduces an expanded uncertainty, ku, as an 

approximate confidence limit, in which a coverage factor  

k is used.  

T Tx ku true value x ku     

In most cases, a value of k = 2 is used to approximate a 95% 

confidence level for normally distributed errors. 
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Topic Pre-GUM GUM 

 

To be useful in managing errors, the coverage factor should be 

based on both a confidence level and the degrees of freedom for 

the uncertainty estimate.  This is achieved with the Student’s t-

statistic, t/2,. 

 

Confidence limits and expanded uncertainty are discussed further 

in section 2.6.1. 
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CHAPTER 2:  BASIC CONCEPTS AND METHODS 
 

A measurement is a process whereby the value of a quantity is estimated.  All measurements are 

accompanied by error.11  Our lack of knowledge about the sign and magnitude of measurement 

error is called measurement uncertainty.  A measurement uncertainty estimate is the 

characterization of what we know statistically about the measurement error.  Therefore, a 

measurement result is only complete when accompanied by a statement of the uncertainty in that 

result. 

 

This chapter describes the basic concepts and methods used to estimate measurement 

uncertainty.12  The general uncertainty analysis procedure consists of the following steps:   

 

1. Define the Measurement Process 

2. Develop the Error Model 

3. Identify the Error Sources and Distributions 

4. Estimate Uncertainties 

5. Combine Uncertainties 

6. Report the Analysis Results 

 

The following sections discuss these analysis steps and clarify the relationship between 

measurement error and uncertainty.  A discussion on using uncertainty estimates to compute 

confidence intervals and expanded uncertainties is also included.   

 

2.1 Define the Measurement Process 

The first step in any uncertainty analysis is to identify the physical quantity that is measured.  

This quantity, sometimes referred to as the “measurand,” may be a directly measured value or 

derived from the measurement of other quantities.  The former type of measurements are called 

“direct measurements,” while the latter are called “multivariate measurements.” 

 

For multivariate measurements, it is important to develop an equation that defines the 

mathematical relationship between the derived quantity of interest and the measured quantities.  

For a case involving three measured quantities x, y, and z, this equation can be written  

 

   , ,q f x y z  (2-1)  

where 

 q  =  quantity of interest 

 f  =  mathematical function that relates q to measured quantities x, y, and z. 

 

At this initial stage of the analysis, it is also important to describe the test setup, environmental 

conditions, technical information about the instruments, reference standards, or other equipment 

used and the procedure for obtaining the measurement(s).  This information will be used to 

identify measurement process errors and estimate uncertainties. 

 

                                                 
11 The relationship between a measured quantity and measurement error is defined in section 2.2. 

12 The methodology of the GUM is employed throughout this document.  The same applies to specific procedures and techniques 

unless otherwise indicated. 
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2.2 Develop the Error Model 

An error model is an algebraic expression that defines the total error in the value of a quantity in 

terms of all relevant measurement process or component errors.  The error model for the quantity 

q defined in equation (2-1) is  

 

  q x x y y z zc c c       (2-2)  

where 

 q = error in q 

 x = error in the measured quantity x 

 y = error in the measured quantity y 

 z = error in the measured quantity z 

 

and cx, cy and cz are sensitivity coefficients that determine the relative contribution of the errors 

in x, y and z to the total error in q.  The sensitivity coefficients are defined below.13 
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In any given measurement scenario, each measured quantity is also accompanied by 

measurement error.  The basic relationship between the measured quantity x and the 

measurement error x is given in equation (2-3). 

 

 x  =  xtrue  +  x (2-3) 

 

The error model for x is the sum of the errors encountered during the measurement process and 

is expressed as 

  x = 1 + 2 + ... + k (2-4) 

 

where the numbered subscripts signify the different measurement process errors.   

 

2.3 Identify Measurement Errors and Distributions 

Measurement process errors are the basic elements of uncertainty analysis.  Once these 

fundamental error sources have been identified, then uncertainty estimates for these errors can be 

developed. 

 

The errors most often encountered in making measurements include, but are not limited to the 

following: 

 

 Reference Attribute Bias 

 Repeatability 

 Resolution Error 

 Operator Bias 

 Environmental Factors Error 

 Computation Error 

                                                 
13 Detailed analysis procedures for multivariate measurements are presented in Chapter 6. 
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Reference Attribute Bias 

Calibrations are performed to obtain an estimate of the value or bias of selected unit-under-test 

(UUT) attributes by comparison to corresponding measurement reference attributes.  The error in 

the value of a reference attribute, at any instant in time, is composed of a systematic component 

and a random component.  Reference attribute bias is the systematic error component that 

persists from measurement to measurement during a measurement session.14  Attribute bias 

excludes resolution error, random error, operator bias and other error sources that are not 

properties of the attribute. 

 

Repeatability 

Repeatability is a random error that manifests itself as differences in measured value from 

measurement to measurement during a measurement session.  It is important to note that, random 

variations in a measured quantity or UUT attribute are not separable from random variations in 

the reference attribute or random variations due to other error sources.  

 

Resolution Error 

Reference attributes and/or UUT attributes may provide indications of sensed or stimulated 

values with some finite precision.  The smallest discernible value indicated in a measurement 

comprises the resolution of the measurement.  For example, a voltmeter may indicate values to 

four, five or six significant digits.  A tape measure may provide length indications in meters, 

centimeters or millimeters.  A scale may indicate weight in terms of kg, g, mg or g. 

 

The basic error model for resolution error, res, is 

 

res =  xindicated – xsensed 

 

where xsensed is a “measured” value detected by a sensor or provided by a stimulus and xindicated is 

the indicated representation of xsensed. 

 

Operator Bias 

Errors can be introduced by the person or operator making the measurement.  Because of the 

potential for human operators to acquire measurement information from an individual 

perspective or to produce a systematic bias in a measurement result, it sometimes happens that 

two operators observing the same measurement result will systematically perceive or produce 

different measured values.   

 

In reality, operator bias has a somewhat random character due to inconsistencies in human 

behavior and response.  The random contribution is included in measurement repeatability and 

the systematic contribution is the operator bias. 

 

Environmental Factors Error 

Errors can result from variations in environmental conditions, such as temperature, vibration, 

humidity or stray emf.  Additional errors are introduced when measurement results are corrected 

for environmental conditions.  For example, when correcting a length measurement for thermal 

                                                 
14 A measurement session is considered to be an activity in which a measurement or sample of measurements is taken under fixed 

conditions, usually for a period of time measured in seconds, minutes or, at most, hours. 
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expansion, the error in the temperature measurement will introduce an error in the length 

correction.  The uncertainty in the correction error is a function of the uncertainty in the error in 

the environmental factor.15 

 

Computation Error 

Data processing errors result from computation round-off or truncation, numerical interpolation 

of tabulated values, or the use of curve fit equations.  For example, in the regression analysis of a 

range of values, the standard error of estimate quantifies the difference between the measured 

values and the values estimated from the regression equation.16  

 

A regression analysis that has a small standard error of estimate has data points that are very 

close to the regression line.  Conversely, a large standard error of estimate results when data 

points are widely dispersed around the regression line.  However, if another sample of data were 

collected, then a different regression line would result.  The standard error of the forecast 

accounts for the dispersion of various regression lines that would be generated from multiple 

sample sets around the true population regression line.  The standard error of forecast is a 

function of the standard error of estimate and the measured value and should be used when 

estimating uncertainty due to regression error.  

 

Repeatability and Resolution Error 

In some measurement situations, repeatability may be considered to be a manifestation of 

resolution error.  The following cases should be considered when determining whether or not to 

include repeatability and resolution as separate error sources. 

 

Case 1 –  Values obtained in a random sample of measurements exhibit just two values and the 

difference between these values is equal to the smallest increment of resolution.  In this case, it 

can be concluded that “background noise” random variations are occurring that are beyond the 

resolution of the measurement.  Consequently, repeatability cannot be identified as a separate 

error source because the apparent random variations are due to resolution error.  Accordingly, the 

uncertainty due to resolution error should be included in the total measurement uncertainty but 

the uncertainty due to repeatability should not be included. 

 

Case 2 – Values obtained in a random sample vary in magnitude substantially greater than the 

smallest increment of resolution.  In this case, repeatability cannot be ignored as an error source.  

In addition, since each sampled value is subject to resolution error, it should also be included.  

Accordingly, the total measurement uncertainty must include contributions from both 

repeatability uncertainty and resolution uncertainty. 

 

Case 3 – Values obtained in a random sample of measurements vary in magnitude somewhat 

greater than the smallest increment of resolution but not substantially greater.  In this case, error 

due to repeatability is partly separable from resolution error, but it becomes a matter of opinion 

as to whether to include repeatability and resolution error in the total measurement error.  Until a 

clear solution to the problem is found, it is best to include both repeatability and resolution error. 

 

In summary, if measurement repeatability is smaller than the display resolution, only resolution 

                                                 
15 In the length correction scenario, error in the coefficient of thermal expansion may also need to be taken into account.  

16 Hanke, J. et al.: Statistical Decision Models for Management, Allyn and Bacon, Inc. 1984. 



 

13 

error should be included in the uncertainty analysis.  If measurement repeatability is larger than 

the display resolution, then both error sources should be included in the uncertainty analysis. 

 

2.3.1  Error Distributions 

Recall from the GUM methodology discussed in Chapter 1, that measurement uncertainty is the 

square root of the variance of the error distribution.17  To better understand the relationship 

between measurement error and measurement uncertainty, measurement error distributions must 

be discussed in some detail.  

 

An important aspect of the uncertainty analysis process is the fact that measurement errors can 

be characterized by probability distributions.  This is stated in Axiom 1.   

 

Axiom 1  -  Measurement errors are random variables that follow 

probability distributions.   

 

The probability distribution for a type of measurement error is a mathematical description that 

relates the frequency of occurrence of values to the values themselves.  Error distributions 

include, but are not limited to normal, lognormal, uniform (rectangular), triangular, quadratic, 

cosine, exponential, U-shaped and trapezoidal. 

 

Each distribution is characterized by a set of statistics.  The statistics most often used in 

uncertainty analysis are the mean or mode and the standard deviation.  With the lognormal 

distribution, a limiting value and the median value are also used.  Probability distributions used 

in measurement applications are described in Appendix B.   Probability density functions for 

selected distributions are summarized in Table 2-1. 

 

Table 2-1.  Probability Distributions 

Distribution Distribution Plot Probability Density Function 

Normal 

 

 
2 2/ 21

( )
2

f e
 


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where  is the standard deviation of the distribution. 

Lognormal 
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where q is a physical limit for , m is the distribution 

median, and  is a shape parameter. 

                                                 
17 The basis for the mathematical relationship between error and uncertainty is presented in section 2.4. 
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Distribution Distribution Plot Probability Density Function 

Quadratic 
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where ± a are the minimum distribution bounding limits. 

Cosine 
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where ± a are the minimum distribution bounding limits. 

Uniform 

(Rectangular) 
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2
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where ± a are the minimum distribution bounding limits. 

Triangular 
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where ± a are the minimum distribution bounding limits. 

Trapezoidal 
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where ± d are the minimum distribution bounding limits. 

U-Shaped 
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where ± a are the minimum distribution bounding limits. 

 

2.3.2 Choosing the Appropriate Distribution  

The normal and lognormal distributions are relevant to most real world measurement 

applications.  Other distributions are also possible, such as the uniform, triangular, quadratic, 
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cosine, exponential, and U-shaped, although they have limited applicability.  Some 

recommendations for selecting the appropriate distribution for a particular measurement error 

source are as follows:   

 

a. The normal distribution should be applied as the default distribution, unless 

information to the contrary is available. 

 

b. Apply the lognormal distribution if it is suspected that the distribution of the value 

of interest is skewed (i.e., non-symmetric) and bounded on one side.18  

 

c. If 100% containment has been observed and minimum bounding limits are 

known, then the following is recommended: 

 

i. Apply the cosine distribution if the value of interest has been subjected to 

random usage or handling stress, and is assumed to possess a central tendency.  

 

ii. Apply the quadratic distribution if it is suspected that values are more evenly 

distributed.   

 

iii. The triangular distribution may be applicable, under certain circumstances, 

when dealing with parameters following testing or calibration.  It is also the 

distribution of the sum of two uniformly distributed errors with equal means 

and bounding limits. 

 

iv. The U-shaped distribution is applicable to quantities controlled by feedback 

from sensed values, such as automated environmental control systems. 

 

v. Apply the uniform distribution if the value of interest is the resolution 

uncertainty of a digital readout.  This distribution is also applicable to 

estimating the uncertainty due to quantization error and the uncertainty in RF 

phase angle. 

 

More specific criteria for correctly selecting the uniform distribution and example cases that 

satisfy this criteria are given in Appendix B.   

 

2.4 Estimate Uncertainties 

As previously discussed, an error distribution tells us whether an error or a range of errors is 

likely or unlikely to occur.  It provides a mathematical description of how likely we are to 

experience (measure) certain values.  With a basic understanding of error distributions and their 

statistics, we can estimate uncertainties.19  We begin with the statistical quantity called the 

variance. 

 

2.4.1  Distribution Variance 

Variance is defined as the mean square dispersion of the distribution about its mean value. 

                                                 
18 In using the normal or lognormal distribution, some effort must be made to estimate a containment probability.  This is 

discussed in more detail in Chapter 3.  

19 To ensure validity, the distribution selected to estimate uncertainty for a given error source should provide the most realistic 

statistical characteristics. 
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var(x)  =   Mean Square Dispersion in x. 

 

If a variable x follows a probability distribution, described by a probability density function f(x), 

then the mean square dispersion or variance of the distribution is given by  

 

   
2

var( ) ( )xx x f x dx


   (2-5) 

 

where x is the mean of x, sometimes referred to as the expectation value for x.  In speaking of 

variations in x that are the result of measurement error, we take x to be the true value of the 

quantity being measured.  From equation (2-3), we can write x = x – x, and equation (2-5) can 

be expressed as 

 

  
 2var( ) ( )

var( )

x x x

x

x f x d  






 


 (2-6) 

 

where x(x) = x + x.  Because of the form of this definition, the variance is also referred to as 

the mean square error.   

 

Equation (2-6) shows that, if a quantity x is a random variable representing a population of 

measurements, then the variance in x is just the variance in the error in x 

 

  var(x)  = var(xtrue + x)  = var(x). (2-7) 

 

By definition, the standard deviation is the square root of the distribution variance or mean 

square error.  The uncertainty in a measurement quantity is equivalent to the standard deviation 

of the error distribution.  This leads to Axiom 2. 

 

Axiom 2  -  The uncertainty in a measurement is the square root of  

   the variance in the measurement error. 

 

Axiom 2 provides the crucial link between measurement error and measurement uncertainty.  If x 

is a measured value, then 

 

  

var( )

var( )

.
x

x

x

u x

u









 (2-8) 

 

Equation (2-8) provides a third axiom that forms a solid and productive basis upon which 

uncertainties can be estimated. 

 

Axiom 3  -  The uncertainty in a measured value is equal to the 

uncertainty in the measurement error. 
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Axiom 3, together with Axioms 1 and 2, allows the computation and combination of 

measurement uncertainty to be rigorously carried out by  

 

1. drawing attention to what it is that we are uncertain of in making measurements, 

and 

2. allowing for the development of measurement uncertainty models for 

measurement scenarios of any complexity. 

 

There are two approaches to estimating the variance of an error distribution and, thus, the 

uncertainty in the measurement error.  Type A estimates involve data sampling and analysis.  

Type B estimates use technical knowledge or recollected experience of measurement processes.  

The basic methods used to make Type A and Type B uncertainty estimates are presented in 

Chapter 3.  

 

2.5 Combine Uncertainties 

Axiom 2 states that the uncertainty in the value of an error is equal to the square root of the 

variance of the error distribution.  As a consequence, we can apply the variance addition rule to 

obtain a method for correctly combining uncertainties from different error sources. 

 

2.5.1 Variance Addition Rule – Direct Measurements   

For purposes of illustration, consider a measured quantity x  =  xtrue  +  x.  We know that the total 

error, x, consists of measurement process errors 

 

 x  =  1 + 2 + … + k = 
1

k

i
i



  

 

where i represents the ith error source and k is the total number of errors.   

 

Applying the variance addition rule to x  yields 

  

 var(x) = var(1 + 2 + … + k) (2-9) 

  =  var(1) + var(2) + … + var(k) +  2cov(1, 2) + 

   2cov(1, 3) + … + 2cov(k-2, k) + 2cov(k-1, k) 

  = 
1

,
1 1 1

var( ) 2 cov( )
k k k

i i j
i i j i

  


   

    

 

where cov(i, j) is the covariance between measurement process errors.  Covariance is defined 

in Section 2.5.3.   

 

2.5.2  The Variance Addition - General Model 

Now consider a more general case of the variance addition rule.  For illustration, consider a 

quantity z defined from the following equation  

 

z  =  ax + by 

   

where x and y are measured quantities and the coefficients a and b are constants.  Using equation 
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(2-3), 

 

 z   =  a(xtrue + x) + b(ytrue + y) 

      =  axtrue + bytrue + ax + by 

  = ztrue + z 

where 

 ztrue =  axtrue + bytrue  

and 

 z =  ax + by. 

 

The variance of z is expressed as 

  

 var(z) = var(ax + by) 

  =  a2 var(x) + b2 var(y) + 2ab cov(x, y) 

 

where the last term is the covariance between x and y.  From Axiom 2, var(z) is expressed as  

 

   
  2

2 2 2 2

var

2 cov( , )
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x y

z

x y

u

a u b u ab



 



 



  
 (2-10) 

 

where 
x

u  and 
y

u  are the uncertainties in x and y, respectively.   

 

2.5.3   Error Correlations – Direct Measurements 

If two variables 1 and 2 are described by a joint probability density function f(1, 2), then the 

covariance of 1 and 2 is given by 

 

  1 2 1 1 2 1 2 2cov( , ) ( , )d f d        
 

   . (2-11) 

 

The covariance of two random variables is a statistical assessment of their mutual dependence.  

Because covariances can have inconvenient physical dimensions, they are rarely used explicitly.  

Instead, we use the correlation coefficient, 
i j  , which is defined as 

 

 
cov( , ) cov( , )

var( ) var( )i j

i j

i j i j

i j u u
 

 

   


 
   (2-12) 

 

where 
i

u  and 
j

u  are the ith and jth measurement process uncertainties.  The correlation 

coefficient provides an assessment of the relative mutual dependence of two random variables.  

The correlation coefficient is a dimensionless number ranging in value from -1 to 1. 

 

If we recall Axiom 2, equation (2-9) can be expressed as   
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2.5.4  Cross-Correlations between Error Components 

From equations (2-12) and (2-13),  the correlation coefficient for x and y is 
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and equation (2-10) becomes  

 

 2 2 2 2 2 2
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Equation (2-15) can be generalized to cases where there are k measured quantities and 

corresponding error components 1, 2, ..., k for these quantities. 
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where 
r

u  and 
q

u  are the total uncertainties for the rth and qth error components, respectively 

and rq is the cross-correlation between these error components.   

 

Each error component is comprised of measurement process errors, such as measurement 

reference bias, repeatability, resolution error, etc.  Hence, we decompose r as  

 

 r = r,1 + r,2 + … + r,l (2-17)  

 

where l denotes the number of measurement process errors. 

 

The cross-correlation coefficient between measurement process errors for the error components 

r,i and q,j, is denoted by 
, ,r i q j   and written 
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where 
,r i

u  and 
,q j

u  are the measurement process uncertainties for the rth and qth error 

components, respectively, and 

 

 
, ,var( )

r i r iu  . (2-19) 

 

Returning to equation (2-16), the correlation coefficient for 
r

u  and 
q

u  is  
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where the total number of process uncertainties for the rth and qth measured quantities are l and 

m, respectively.  As equation (2-20) shows, the correlation coefficient, rqij, accounts for cross-

correlations between measurement process uncertainties for the rth and qth error components. 

 

2.5.5 Combined Uncertainty 

The variance addition rule provides a logical approach for computing the overall, combined 

uncertainty that accounts for correlations between error sources.  Given equations (2-16) and  

(2-20), the total uncertainty, uT, can be generally expressed as 
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From the above equation, one can surmise that uncertainties are not always combined using the 

root sum square (RSS) method. 

 

2.5.6 Establishing Correlations 

To assess the impact of correlated errors on the combined uncertainty, consider the measurement 

of a quantity x that involves two error sources 1 and 2  

 

 x =  xtrue + 1 + 2.  

 

From Axioms 2 and 3 and the variance addition rule, the uncertainty in x is obtained from 
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The correlation coefficient, 1,2, for two error sources can range in value from -1 to +1.   

 

Statistically Independent Error Sources 

If the two error sources are statistically independent, then 1,2 = 0 and 2 2
1 2xu u u  .  

Therefore, uncertainties of statistically independent error sources are combined using the RSS 

method.   
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Strongly Correlated Error Sources 

If 1,2 = 1, then  
22 2

1 2 1 2 1 2 1 22xu u u u u u u u u       .  Therefore, the uncertainties are 

combined linearly.   

 

When two error sources are strongly correlated and compensate for one another, then  

1,2 = -1 and  
22 2

1 2 1 2 1 2 1 22xu u u u u u u u u       .  Therefore, the combined 

uncertainty is the absolute value of the difference between the individual uncertainties. 

 

There typically aren't any correlations between measurement process errors for a given quantity.  

In general, it is safe to assume that there are no correlations between the following measurement 

process errors: 

 

 Repeatability and Reference Attribute Bias (ran,bias = 0) 

 Repeatability and Operator Bias (ran,oper = 0) 

 Reference Attribute Bias and Resolution Error (bias,res = 0) 

 Reference Attribute Bias and Operator Bias (bias,oper = 0) 

 Operator Bias and Environmental Factors Error (oper,env = 0) 

 Resolution Error and Environmental Factors Error (res, env = 0) 

 Digital Resolution Error and Operator Bias (res, oper = 0) 

 

Cross-Correlations 

Instances may arise where measurement process errors for different error components are 

correlated.  In this case, equation (2-20) must be applied to account for cross-correlations 

between measurement components.  Accounting for cross-correlations is discussed further in 

Chapter 6. 

 

2.5.7 Degrees of Freedom 

Generally speaking, degrees of freedom signifies the amount of information or knowledge that 

went into an uncertainty estimate.  Therefore, when uncertainties are combined, we need to know 

the degrees of freedom for the total uncertainty.  Unfortunately, the degrees of freedom for a 

combined uncertainty estimate is not a simple sum of the degrees of freedom for each 

uncertainty component.   

 

The effective degrees of freedom, eff, for the total uncertainty, uT, resulting from the 

combination of uncertainties ui and associated degrees of freedom, i, for n error sources can be 

estimated via the Welch-Satterthwaite formula given in equation (2-22) 

 

 
4

*
4 4

1

T
eff

n
i i

i i

u

a u








 (2-22) 

 

where uT* is the total or combined uncertainty computed assuming no error correlations.   
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 2 2
*

1
i

n

T i
i

u a u


   (2-23) 

 

Note:  While the Welch-Satterthwaite formula is applicable for statistically 

independent, normally distributed error sources, it can usually be thought of as a 

fair approximation in cases where error sources are not statistically independent. 

 

Determining the degrees of freedom for Type A and Type B uncertainty estimates is discussed in 

Chapter 3. 

 

2.6 Report the Analysis Results 

Reporting the results of an uncertainty analysis is an important aspect of measurement quality 

assurance.  Therefore, the analysis results must be reported in a way that can be readily 

understood and interpreted by others. 

 

Section 7 of the GUM recommends that the following information be included: 

 

1. The estimated value of the quantity of interest (measurand) and its combined 

uncertainty and degrees of freedom. 

2. The functional relationship between the quantity of interest and the measured 

components, along with the sensitivity coefficients.  

3. The value of each measurement component and its combined uncertainty and 

degrees of freedom 

4. A list of the measurement process uncertainties and associated degrees of freedom 

for each component, along with a description of how they were estimated. 

5. A list of applicable correlation coefficients, including any cross-correlations 

between component uncertainties.  

 

It is also a good practice to provide a brief description of the measurement process, including the 

procedures and instrumentation used, and additional data, tables and plots that help clarify the 

analysis results.   

 

When reporting the uncertainty in a measured value, it is often desirable to include confidence 

limits or expanded uncertainty.  Therefore, some discussion about confidence limits and 

expanded uncertainty is provided in the following section. 

 

2.6.1 Confidence Limits and Expanded Uncertainty 

In statistics, we make inferences about population parameters, such as the mean value and 

standard deviation, through the analysis of sampled data or other heuristic information.  

Confidence limits provide a numerical interval which contains the population parameter of 

interest with some probability.20  Confidence limits are computed using either the normal or 

Student’s t distribution.21   

                                                 
20 Hanke, J. et al.: Statistical Decision Models for Management, Allyn and Bacon, Inc., 1984. 

21 The Student’s t distribution is a symmetric distribution that approaches the normal distribution as the degrees of freedom 

approach infinity. 
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In reporting measurement results, the uncertainty, u, and its associated degrees of freedom, , 

can be used to establish confidence limits that contain the true value,  (estimated by a sample 

mean value x ), with some specified confidence level or probability, p.  In this application, the 

confidence limits are expressed as  

 

 / 2, / 2,x t u x t u        (2-24) 

 

where the multiplier is the t-statistic, t/2,, and  = 1- p is the significance level.  Values for t/2, 

are obtained from the percentiles of the probability density function for the Student’s t 

distribution. 

 

As seen from equation (2-24), the width of the confidence limits or interval is dependent on three 

factors:  

 

1. the confidence level  

2. the estimated uncertainty  

3. the degrees of freedom.  

 

The development and application of confidence limits are discussed further in Chapters 3 and 4.  

 

The GUM defines the term expanded uncertainty as "the quantity defining an interval about the 

result of a measurement that may be expected to encompass a large fraction of the distribution of 

values that could reasonably be attributed to the measurand."   

 

This means that the expanded uncertainty is basically defined as an interval that is expected to 

contain the true value of the measurand.  In this context, the expanded uncertainty, ku, is offered 

as approximate confidence limits, in which the coverage factor, k, is used in place of the  

t-statistic 

 

 truex ku x x ku    . (2-25) 

 

The introduction of the expanded uncertainty was meant to clarify the concept of uncertainty, but 

confusion over and misapplication of this term persisted since the GUM was first released.  To 

mitigate this problem, the GUM also introduced the term "standard uncertainty" to help 

distinguish uncertainty from expanded uncertainty.  However, in practice, the term expanded 

uncertainty and uncertainty are often used interchangeably.  This, of course, can lead to incorrect 

inferences and miscommunications.   

 

Note:  The use of the term uncertainty to represent an expanded uncertainty is not 

a recommended practice. 

 

The use of coverage factors in lieu of the t-statistic emerged as an artifice to “emulate” 

confidence limits in cases where the total uncertainty is a Type B estimate or is composed of 

both Type A and Type B estimates. 
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Not being a statistical quantity in the purest sense, a Type B estimate was not considered to be 

associated with definable degrees of freedom that could be regarded as quantifying the amount of 

information used in producing the estimate.  Accordingly, if used alone or combined with a Type 

A estimate, the result was not viewed as being a true statistic. 

 

As is shown in Appendix D, we now have the means to estimate the degrees of freedom for  

Type B estimates in such a way that they can be considered on an approximately equal statistical 

footing with Type A estimates.  Consequently, Type B uncertainty estimates can be used to 

determine confidence limits, conduct statistical tests, evaluate decisions, etc. 
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CHAPTER 3:  ESTIMATING UNCERTAINTY 
 

There are two approaches to estimating measurement uncertainty.  Type A uncertainty estimates 

involve data sampling and analysis. Type B uncertainty estimates use engineering knowledge or 

recollected experience of measurement processes.  This chapter discusses sample statistics used 

to make Type A uncertainty estimates and heuristic methods used to make Type B uncertainty 

estimates. 

 

3.1 Type A Estimates 

A Type A uncertainty estimate is defined as an estimate obtained from a sample of data.  Data 

sampling involves making repeat measurements of the quantity of interest.  It is important that 

each repeat measurement is independent, representative and taken randomly. 

 

Random sampling is a cornerstone for obtaining relevant statistical information.  Therefore, Type 

A estimates usually apply to the uncertainty due to repeatability or random error.  The data used 

for Type A uncertainty estimates typically consist of sampled values.  However, the data may be 

comprised of sampled mean values or sampled cells.  The computed statistics vary slightly 

depending on the sample type.   

 

Statistical analysis of sampled values will be presented herein for illustration.  Statistical analysis 

methods for all three sample types are presented in Appendix C, along with topics on outlier 

removal and normality testing.    

 

3.1.1  Statistics for Sampled Values 

Because the data sample is drawn from a population22 of values, we make inferences about the 

population from certain sample statistics and from assumptions about the way the population of 

values is distributed.  A sample histogram can aid in our attempt to picture the population 

distribution. 

 

 

Figure 3-1.  Repeatability Distribution 

 

The normal distribution is ordinarily assumed to be the underlying distribution for repeatability 

or random error.  When samples are taken, the sample mean and the sample standard deviation 

are computed and assumed to represent the mean and standard deviation of the population 

                                                 
22 In statistics, a population is the total set of possible values for a random variable under consideration. 

Probability
Density

Population Distribution

x

Sample Histogram
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distribution.  However, this equivalence is only approximate.  To account for this, the Student's 

t distribution is used in place of the normal distribution to compute confidence limits around the 

sample mean.  

 

The sample mean, x , is obtained by taking the average of the sampled values.  The average 

value is computed by summing the values sampled and dividing them by the sample size, n.  

 

  1 2
1

1 1
...

n

n i
i

x x x x x
n n 

       (3-1) 

 

The sample mean can be thought of as an estimate of the value that we expect to get when we 

make a measurement.  This "expectation value" is called the population mean, which is 

expressed by the symbol . 

 

The sample standard deviation provides an estimate of the population standard deviation.  The 

sample standard deviation, sx, is computed by taking the square root of the sum of the squares of 

sampled deviations from the mean divided by the sample size minus one. 

 

  
2

1

1

1

n

x i
i

s x x
n 

 


 (3-2) 

 

The value n-1 is the degrees of freedom for the estimate, which signifies the number of 

independent pieces of information that go into computing the estimate.  Absent any systematic 

influences during sample collection, the sample standard deviation will approach its population 

counterpart as the sample size or degrees of freedom increases.  The degrees of freedom for an 

uncertainty estimate is useful for establishing confidence limits and other decision variables. 

  

The sample standard deviation provides an estimate of the repeatability or random error 

population standard deviation,
,x ran .  As discussed in Chapter 2, Section 2.4, the standard 

deviation of an error distribution is equal to the square root of the distribution variance. 

 

 
, ,var( )

x ran x ran   (3-3) 

 

It has also been shown that  

 
, ,var( ).

x ran x ranu   (3-4) 

 

Therefore, the sample standard deviation provides an estimate of the uncertainty due to 

repeatability or random error.23 

 

 
,

.
x ran xu s   (3-5) 

 

If the objective of the uncertainty analysis is to characterize a given single measurement 

                                                 
23 The uncertainty due to repeatability or random error in measurement is estimated from a sample of measurements taken over a 

time period short enough to eliminate variations due to systematic drift or other factors. 
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performed under specific circumstances, as in developing a statement of capability, then equation 

(3-5) should be used. 

 

If the estimate is intended to represent the uncertainty in the mean value due to repeatability or 

random error, then the variance of the sample mean is evaluated. 

 

 

,

2
1 1

var( ) var( )

1 1
var var

x ran

n n

i i
i i

x

x x
n n



 



   
     

   

 (3-6) 

 

An important criterion for random sampling is that each of the sampled values must be 

statistically independent of one another.  The variance of a sum of independent variables is the 

sum of the variances.  Therefore, equation (3-6) becomes 

 

 , 2
1

1
var( ) var( )

n

x ran i
i

x
n




   (3-7) 

 

Since each xi is sampled from a population with a variance equal to 2
x , then 2var( )i xx   and 
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 



   (3-8) 

 

It has been shown that the population standard deviation x is estimated with the sample standard 

deviation sx.  Therefore, the uncertainty in the mean value can be estimated to be 

 

 
, ,var( )

x ran

x
x ran

s
u

n
    (3-9) 

 

Once estimates of the sample mean and standard deviation have been obtained, and the degrees 

of freedom have been noted, it becomes possible to compute limits that bound the sample mean 

with some specified level of confidence.  These limits are called confidence limits and the degree 

of confidence is called the confidence level. 

 

Confidence limits can be expressed as multiples of the sample standard deviation.  For normally 

distributed samples, this multiple is called the t-statistic.  The value of the t-statistic is 

determined by the desired percent confidence level, C, and the degrees of freedom, , for the 

sample standard deviation.   

 

Confidence limits for a single measured value, x, are given by 

 

 / 2, xx t s 
 (3-10) 

 

and confidence limits for the mean or average, x , of a sample of measured values are given by 
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 / 2,
xs

x t
n

   (3-11) 

 

where  = (1 - C/100) and  = n - 1. 

 

Comparison of equations (3-10) and (3-11) shows that confidence limits about a sample mean 

value are much smaller than for a single measured value.  This should be expected since, with a 

sample mean, we have more information and a greater expectation of the sample mean value 

being closer to the population mean.  

 

3.2 Type B Estimates 

In some cases, we must attempt to quantify the statistics of measurement error distributions by 

drawing on our recollected experience concerning the values of measured quantities or on our 

knowledge of the errors in these quantities.24  Estimates made in this manner are called heuristic 

or Type B estimates. 

 

Uncertainty estimates for measurement process errors resulting from reference attribute bias, 

display resolution, operator bias, computation and environmental factors are typically determined 

heuristically via containment limits and containment probabilities.   

 

As discussed in Chapter 2, measurement errors can be described by a variety of probability 

distributions.  Of these, the normal and lognormal distributions provide the most realistic 

statistical representation of measurement errors.  Therefore, it is prudent to detail the 

development of uncertainty estimates for these distributions. Uncertainty estimates for other 

distributions are discussed in Section 3.2.5. 

 

Computing the degrees of freedom for Type B estimates is discussed in Section 3.2.3.  Applying 

the Student’s t distribution for estimating uncertainties with finite degrees of freedom is 

discussed in Section 3.2.4.  

 

3.2.1  Normal Distribution 

If the measurement error is normally distributed, then the uncertainty is computed from  

  

 
1 1

2

L
u

p


 

  
 

 (3-12) 

 

where  L are the containment limits, p is the containment probability, and -1() is the inverse 

normal distribution function.25 

 

Containment limits may be taken from manufacturer tolerance limits, stated expanded 

uncertainties obtained from calibration records or certificates, or statistical process control limits.  

Containment probability can be obtained from service history data, for example, as the number 

                                                 
24  Information or experience obtained from previous measurement data, general knowledge about the behavior, properties or 

characteristics of materials or instruments, manufacturer specifications, certificates or other calibration history data, reference 

data from handbooks, etc.   

25 The inverse normal distribution function can be found in statistics texts and in most spreadsheet programs.  
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of observed in-tolerances, nin-tol, divided by the number of calibrations, N. 

 

in-tol% 100%
n

C
N

  

 

3.2.2  Lognormal Distribution 

The lognormal distribution is often used to estimate uncertainty when the error containment 

limits are asymmetric.  The uncertainty is computed from  

 

 
2 2/ 2| | 1u m q e e     (3-13) 

 

where q is a physical limit for error the distribution,  m is the population median and  is the 

shape parameter.  The quantities m, q and  are obtained by numerical iteration, given 

containment limits and an associated containment probability. 

 

3.2.3   Type B Degrees of Freedom 

In equation (3-9), the degrees of freedom are assumed to be infinite.  However, we know that 

heuristic estimates are not based on an "infinite" amount of knowledge.  As with Type A 

uncertainty estimates, the degrees of freedom quantifies the amount of information that goes into 

the Type B uncertainty estimate and is useful for establishing confidence limits and other 

decision variables. 

 

Therefore, if there is an uncertainty in the containment limits (e.g., L  L) or the containment 

probability (e.g., p  p), then it becomes imperative to estimate the degrees of freedom.   

 

Annex G of the GUM provides a relationship for computing the degrees of freedom for a Type B 

uncertainty estimate 
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 (3-14) 

 

where 2[u(x)] is the variance in the uncertainty estimate, u(x), and u(x) is the uncertainty in the 

uncertainty estimate.26  Hence, the degrees of freedom for a Type B estimate is inversely 

proportional to the square of the ratio of the uncertainty in the uncertainty divided by the 

uncertainty.   

 

While this approach is intuitively appealing, the GUM offers no advice about how to determine 

2[u(x)] or u(x).  Since the publication of the GUM, a methodology for determining 2[u(x)] 

and computing the degrees of freedom for Type B estimates has been developed. 27   This 

methodology is outlined in Appendix D. 

 

                                                 
26 This equation assumes that the underlying error distribution is normal. 

27 Castrup, H.: “Estimating Category B Degrees of Freedom,” presented at the 2000 Measurement Science Conference, January 

21, 2001.  
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3.2.4  Student’s t Distribution 

Once the containment limits, containment probability and the degrees of freedom have been 

established, we can estimate the standard deviation or uncertainty of the distribution of interest. 

To do this, we use the Student’s t distribution and construct a t-statistic based on the containment 

probability and degrees of freedom.   

 

The uncertainty estimate is then obtained by dividing the containment limit by the t-statistic, 

according to equation (3-15). 

 

 
/ 2,

L
u

t 

  (3-15) 

 

3.2.5  Other Distributions 

Although the normal, lognormal and Student’s t distributions are most often used to estimate 

uncertainty, other distributions also have limited applicability.  As discussed in Chapter 2, many 

of these distributions are described by minimum bounding limits,  a and 100% containment 

probability (i.e., p = 1). 

 

Uncertainty equations for selected distributions are summarized in Table 3-1.  Equations for 

additional distributions are provided in Appendix B.  

 

Table 3-1.  Uncertainty Equations for Selected Distributions 

Distribution Distribution Plot Uncertainty Equation 

Quadratic 

 

 

5

a
u   

 
where  a are the minimum bounding limits. 

Cosine 

 

2

6
1

3

a
u


   

 
where  a are the minimum bounding limits. 

Uniform 

(Rectangular) 

 

3

a
u   

 
where  a are the minimum bounding limits. 
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Distribution Distribution Plot Uncertainty Equation 

Triangular 

 

6

a
u   

 
where  a are the minimum bounding limits. 

U-Shaped 

 

2

a
u   

 
where  a are the minimum bounding limits. 
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CHAPTER 4:  INTERPRETING AND APPLYING 
EQUIPMENT SPECIFICATIONS 
 

Manufacturer specifications are an important element of cost and quality control for testing, 

calibration and other measurement processes.  They are used for equipment selection or 

establishing equipment substitutions for a given measurement application.  In addition, 

manufacturer specified tolerances are used to compute test uncertainty ratios and estimate bias 

uncertainties.  

 

Measuring and test equipment (MTE) are periodically calibrated to determine if they are 

performing within manufacturer specified tolerance limits.  In fact, the elapsed-time or interval 

between calibrations is often based on in-tolerance or out-of-tolerance data acquired from 

periodic calibrations.  Therefore, it is important that manufacturer specifications are properly 

interpreted and applied.   

 

This chapter discusses how manufacturer specifications are obtained, interpreted and used to 

assess instrument performance and reliability.  Recommended practices and illustrative examples 

are given for the application to uncertainty estimation.  An in-depth discussion about developing, 

verifying and reporting MTE specifications can be found in NASA Measurement Quality 

Assurance Handbook - Annex 2 Measuring and Test Equipment Specifications. 

 

4.1 Measuring and Test Equipment 

Before we delve into defining and interpreting specifications, it is important to clarify what 

constitutes MTE.  For the purposes of uncertainty analysis, MTE include artifacts, instruments, 

sensors and transducers, signal conditioners, data acquisition units, data processors and output 

displays.   

 

4.1.1   Artifacts 

Artifacts constitute passive devices such as mass standards, standard resistors, pure and certified 

reference materials, gage blocks, etc.  Accordingly, artifacts have stated outputs or nominal 

values and associated specifications. 

 

4.1.2 Instruments 

Instruments constitute equipment or devices that are used to measure and/or provide a specified 

output. They include, but are not limited to, oscilloscopes, wave and spectrum analyzers, 

Josephson junctions, frequency counters, multimeters, signal generators, simulators and 

calibrators, inclinometers, graduated cylinders and pipettes, spectrometers and chromatographs, 

micrometers and calipers, coordinate measuring machines, balances and scales.  Accordingly, 

instruments can consist of various components and associated specifications.   

 

4.1.3   Sensors and Transducers 

Sensors constitute equipment or devices that respond to a physical input (i.e., pressure, 

acceleration, temperature or sound).  The terms sensor and transducer are often used 

interchangeably.  Transducers more generally refer to devices that convert one form of energy to 

another.  Consequently, actuators that convert an electrical signal to a physical output are also 

considered to be transducers.  For the purposes of this document, discussion will be limited to 

sensors and transducers that convert a physical input to an electrical output. 
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Note: Transmitters constitute sensors coupled with internal signal conditioning 

and/or data processing components, as well as an output display.  

 

Some sensors and transducers convert the physical input directly to an electrical output, while 

others require an external excitation voltage or current.  Sensors and transducers encompass a 

wide array of operating principles (i.e., optical, chemical, electrical) and materials of 

construction.  Consequently, their characteristics and associated specifications can cover a broad 

spectrum of detail and complexity.  A selected list of sensors and transducers is shown in  

Table 4-1.    

 

Table 4-1.  Sensors  and Transducers 

Input Sensor/Transducer Output Excitation 

Temperature Thermocouple 

RTD 

Thermistor 

Voltage 

Resistance 

Resistance 

 

Current 

Current, Voltage 

Pressure and Sound Strain Gauge 

Piezoelectric 

Resistance 

Voltage 

Voltage 

Force and Torque Strain Gauge 

Piezoelectric 

Voltage 

Voltage 

Voltage 

 

Acceleration/Vibration 

 

Strain Gage 

Piezoelectric 

Variable Capacitance 

Voltage 

Charge 

Voltage 

Voltage 

 

Voltage 

Position/Displacement 

 

LVDT and RVDT 

Potentiometer 

AC Voltage 

Voltage 

Voltage 

Voltage 

Light Intensity Photodiode Current  

Flow Rate Coriolis 

Vortex Shedding 

Turbine 

Frequency 

Pulse/Frequency 

Pulse/Frequency 

 

Voltage 

pH Electrode Voltage  

 

4.1.4   Signal Conditioners 

Signal conditioners constitute devices or equipment that are employed to modify the 

characteristic of a signal. Conditioning equipment include attenuators, amplifiers, bridge circuits, 

filters, analog-to-digital and digital-to-analog converters, excitation voltage or current, reference 

temperature junctions, voltage to frequency and frequency to voltage converters, multiplexers 

and linearizers.  A representative list of signal conditioning methods and functions is provided in 

Table 4-2. 

 

Table 4-2.  Signal Conditioning Methods 

Type Function 

Analog-to-Digital Conversion (ADC) Quantization of continuous signal  

Amplification Increase signal level 
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Type Function 

Attenuation Decrease signal level 

Bridge Circuit Increase resistance output. 

Charge Amplification Convert charge to voltage. 

Cold Junction Compensation Provide temperature correction for thermocouple 

connection points. 

Digital-to-Analog Conversion (DAC) Convert discrete signal to continuous signal 

Excitation Provide voltage or current to transducer. 

Filter Provide frequency cutoffs and noise reduction 

Isolation Block high voltage and current surges.  

Linearization Convert non-linear signal to representative linear output. 

Multiplexing Provide sequential routing of multiple signals. 

 

4.1.5   Data Acquisition 

Data acquisition (DAQ) equipment provide the interface between the signal and the data 

processor or computer.  DAQ equipment include high speed timers, random access memory 

(RAM) and cards containing signal conditioning components. 

 

4.1.6   Data Processors 

Data processors constitute equipment or methods used to implement necessary calculations.  

Data processors include totalizers and counters, statistical methods, regression or curve fitting 

algorithms, interpolation schemes, measurement unit conversion or other computations.  Error 

sources resulting from data reduction and analysis are often overlooked in the assessment of 

measurement uncertainty. 

 

4.1.7   Output Displays 

Output display devices constitute equipment used to visually present processed data.  Display 

devices can be analog or digital in nature.  Analog devices include chart recorders, plotters and 

printers, dials and gages, cathode ray tube (CRT) panels and screens.  Digital devices include 

light-emitting diode (LED) and liquid crystal display (LCD) panels and screens.  Resolution is a 

primary source of error for digital and analog displays.  

 

4.2 Performance Characteristics 

Manufacturer specifications should provide an objective assessment of MTE performance 

characteristics.  However, understanding specifications and using them to compare or select 

equipment from different manufacturers or vendors can be a difficult task.  This primarily results 

from inconsistent terminology, units, and methods used to develop and report equipment 

specifications. 

 

Some manufacturers may provide ample information detailing individual performance 

specifications, while others may only provide a single specification for overall accuracy.  In 

some instances, specifications can be complex, including numerous time or range dependent 

characteristics.  And, since specification documents are also a means for manufacturers to market 
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their products, they often contain additional information about features, operating condition 

limits, or other qualifiers. 

 

4.2.1   Static Characteristics 

Static performance characteristics provide an indication of how an instrument, transducer or 

signal conditioning device responds to a steady-state input at one particular time.  In addition to 

sensitivity (or gain) and zero offset, other static characteristics include nonlinearity, repeatability, 

hysteresis, resolution, noise, transverse sensitivity, acceleration sensitivity, thermal stability, 

thermal sensitivity shift, temperature drift, thermal zero shift, temperature coefficient, and 

accuracy.28  

 

4.2.2 Dynamic Characteristics 

Dynamic performance characteristics provide an indication of how an instrument, transducer or 

signal conditioning device responds to changes in input over time. Dynamic characteristics 

include warm-up time, response time, time constant, settling time, zero drift, sensitivity drift, 

stability, upper and lower cutoff frequencies, bandwidth, resonant frequency, frequency 

response, damping, phase shift, and reliability.29   

 

4.2.3 Other Characteristics 

Other characteristics are often included with performance specifications to indicate input and 

output ranges, environmental operating conditions, external power requirements, weight, 

dimensions and other physical aspects of the device.  These other characteristics include rated 

output, full scale output, range, span, dynamic input range, threshold, dead band, operating 

temperature range, operating pressure range, operating humidity range, storage temperature 

range, thermal compensation, temperature compensation range, vibration sensitivity, excitation 

voltage or current, weight, length, height, and width.  

 

4.3   Obtaining Specifications 

Manufacturers publish MTE specifications on their web pages, in product data sheets, technical 

notes, control drawings and operating manuals.  Some manufacturers also maintain an archive of 

specification information for discontinued products.  In some instances, manufacturers will only 

provide MTE specification information upon formal request by phone, fax or email.  In general, 

however, published specifications are relatively easy to find via an internet search. 

 

4.4   Interpreting Specifications 

Ultimately, the MTE user must determine which specifications are relevant to their application.   

Therefore, a basic understanding of the fundamental operating principles of the MTE is an 

important requirement for proper interpretation of performance specifications.  In some cases, 

first-hand experience about the MTE may be gained through calibration and testing.  In other 

cases, detailed knowledge about the MTE may be obtained from operating manuals, training 

courses, patents and other technical documents provided by the manufacturer.  

 

Ideally, MTE specifications provide adequate details about the expected performance 

characteristics of a representative group of identical devices or items (i.e., a specific 

manufacturer and model).  This information should be reported in a logical format, using 

                                                 
28 Accuracy is typically reported as a combined specification that accounts for nonlinearity, hysteresis, and repeatability. 
29 Reliability specifications typically refer to performance over an extended time-period or maximum number of cycles. 
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consistent terms, abbreviations and units that clearly convey pertinent performance 

characteristics.   

 

For the most part, manufacturer specifications are intended to convey tolerances or limits that are 

expected to bound the MTE performance characteristics.  For example, these limits may 

correspond to temperature, shock and vibration parameters that affect the sensitivity and/or zero 

offset of a sensing device.   

 

Unfortunately, there is no universal guide or standard regarding the development and reporting 

of MTE specifications.  Inconsistency in the methods used to develop and report performance 

specifications, and in the terms and units used to convey this information, create obstacles to the 

proper understanding and interpretation of MTE specifications.  

  

In select instances, the information included in a specification document may follow a 

standardized format.30  However, the vast majority of specification documents fall short of 

providing crucial information about the confidence levels associated with reported specification 

limits.  MTE manufacturers also don’t indicate the applicable probability distribution for a 

particular performance characteristic. 

 

Consequently, it is difficult to estimate uncertainties from MTE specifications without gaining 

further clarification or making some underlying assumptions.  It is a good practice to  

 

1. Review the specifications and highlight the MTE characteristics that need 

clarification.  

2. Check the operating manual and associated technical documents for other useful 

details.   

3. Request additional information and clarification from the manufacturer’s 

technical department.   

 

4.4.1    Terms, Definitions and Abbreviations 

Technical organizations, such as ISA and SMA, have published documents that adopt 

standardized instrumentation terms and definitions.31,32  However, there is a need for further 

clarification and consistency in the general terms and definitions used in the reporting of MTE 

specifications.  General terms and definitions for MTE specifications and other related 

characteristics are provided in Appendix A.  There are particular terms and abbreviations that 

require further discussion.   

 

For example, some MTE specifications may convey performance characteristics as “typical” or 

“maximum” values.  However, the basis for these classifications is not often apparent and 

introduces confusion about which specification (typical or maximum) is applicable.  In addition, 

since associated confidence levels, containment probabilities or coverage factors are not often 

                                                 
30 See for example, ISA-RP37.2-1982-(R1995): Specifications and Tests for Strain Gauge Pressure Transducers, The 

Instrumentation, Systems and Automation Society, Reaffirmed December 14, 1982. 

31 ISA-37.1-1975 (R1982): Electrical Transducer Nomenclature and Terminology, The Instrumentation, Systems and 

Automation Society, Reaffirmed December 14, 1982. 

32 SMA LCS 04-99: Standard Load Cell Specifications, Scale Manufacturers Association, Provisional 1st Edition, April 24, 1999. 
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provided, it is difficult to clearly interpret either set of specifications.  Consequently, the 

manufacturer must be contacted for further clarification. 

 

MTE specifications commonly include the use of abbreviations such as FS, FSO, FSI, RDG, RO, 

RC and BSL.  The abbreviation FS (or F.S.) refers to full scale.  Similarly, the abbreviation FSO 

(or F.S.O.) refers to full scale output and the abbreviation FSI (or F.S.I.) refers to full scale input.  

Specifications that are reported as % FS (or ppm FS) generally refer to full scale output. When in 

doubt, however, contact the manufacturer for clarification.   

 

The abbreviation RDG refers to reading or output value. The abbreviation RO (or R.O.) refers to 

rated output and the abbreviation RC (or R.C.) refers to rated capacity.  Some MTE 

specifications also use the abbreviation BSL (or B.S.L.) to indicate that a combined non-

linearity, hysteresis, and repeatability specification is based on observed deviations from a best-

fit straight line.  Abbreviations commonly used in MTE specifications are listed in the Acronyms 

and Abbreviations section of this document. 

 

4.4.2    Qualifications, Stipulations and Warnings 

Most MTE specifications describe the performance characteristics covered by the manufacturer’s 

product warranty.  These reported specifications also often include qualifications, clarifications 

and/or caveats.  Therefore, it is a good practice to read all notes and footnotes carefully to 

determine which, if any, are relevant to the specifications.   

 

For example, MTE specification documents commonly include a footnote warning that the 

values are subject to change or modification without notice.  Manufacturers do not generally 

modify existing MTE specifications unless significant changes in components or materials of 

construction warrant the establishment of new specifications.  However, it may be necessary to 

contact the manufacturer to ensure that the appropriate MTE specification documents are 

obtained and applied.33  

 

MTE specifications may state a recommended range of environmental operating conditions to 

ensure proper performance.  They may also include a qualification indicating that all listed 

specifications are typical values referenced to standard conditions (e.g., 25 C and 10 VDC 

excitation).  This qualification implies that the primary performance specifications were 

developed from tests conducted under a particular set of conditions.   

  

If so, additional specifications, such as thermal zero shift, thermal sensitivity shift and thermal 

transient response error, are included to account for the variation in actual MTE operating 

conditions from standard conditions. The MTE user must then consider whether or not these 

additional specifications are relevant to the MTE application. 

 

4.4.3    Specification Units 

As with terms and definitions, specification units can vary between manufacturers of similar 

MTE models.  In addition, specification units can vary from one performance characteristic to 

another for a given MTE manufacturer model.  

 

                                                 
33 That is, the published specifications considered by the manufacturer to be applicable at the time the MTE was purchased. 
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For example, display resolution specifications can be expressed in digits, counts, percent (%) or 

other units such as mV or C.  Nonlinearity, hysteresis and repeatability specifications can be 

expressed as % FS, ppm FS, % RDG, ppm RDG, % RO or other units.  Sensitivity specifications 

can be expressed as mV/psi, 

an be expressed as % FS/F, % RO/C, ppm/C, % FS/g, psi/g, psi/F, mV/C, %Load/F, etc.  

Noise specifications such as Normal Mode Rejection Ratio (NMRR) and Common Mode 

Rejection Ratio (CMRR) are generally specified in decibels (dB) at specified frequencies 

(usually 50 and 60 Hz).   

 

Different specification units can make it especially difficult to interpret specifications.  In most 

cases, unit conversion is required before specifications can be properly applied.  Selected 

specification conversion factors are listed in Table 4-3 for illustration.   

 

Table 4-3.  Specification Conversion Factors 

Percent ppm dB 

Relative to 

10 V 

Relative to 

100 psi 

Relative to 

10 kg/C 

1% 10000 -40 100 mV 1 psi 100 g/C 

0.1% 1000 -60 10 mV 0.1 psi 10 g/C 

0.01% 100 -80 1 mV 0.01 psi 1 g/C 

0.001% 10 -100 100 V 0.001 psi 100 mg/C 

0.0001% 1 -120 10 V 0.0001 psi 10 mg/C 

 

Note:  A decibel (dB) is a dimensionless unit for expressing the ratio of two 

values of power, P1 and P2, where dB = 10 log(P2/P1).  The dB values in Table  

4-3 are computed for P2/P1 ratios corresponding to the percent and ppm values 

listed.  For electrical power, it is important to note that power is proportional to 

the square of voltage, V, so that dBV = 10 log (V1
2/V2

2) = 20 log (V1/V2).  

Similarly, acoustical power is proportional to the square of sound pressure, p, so 

that dBA = 10 log (p1
2/p2

2) = 20 log (p1/p2). 

 

Additional calculations may be required before specifications can be properly used to estimate 

MTE parameter bias uncertainty and tolerance limits.  This brings us to the topic of applying 

specifications. 

 

4.5  Applying Specifications 

Manufacturer specifications can be used to purchase or substitute MTE for a given measurement 

application, estimate bias uncertainties and establish tolerance limits for calibration and testing.  

Therefore, MTE users must be proficient at identifying applicable specifications and in 

interpreting and combining them.   

 

It is also important that manufacturers and users have a good understanding and assessment of 

the confidence levels and error distributions applicable to MTE specifications.  This is a crucial 

part of the process and requires some further discussion. 

 

4.5.1    Confidence Levels 

Some manufacturer MTE specifications are established by testing a sample of the produced 
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model population.  The sample test results are used to develop limits that ensure a large 

percentage of the MTE model population will perform as specified.  Consequently, the 

specifications are confidence limits with associated confidence levels.34 

 

That is, the limits specified for an MTE performance characteristic are established for a 

particular confidence level and degrees of freedom (or sample size), as discussed in Chapter 2. 

Confidence limits,  Lx, for values of a specific performance characteristic, x, are expressed as  

 

 / 2,x xL t s     (4-1) 

where 

 t/2, = t-statistic 

  = significance level = 1 – C/100 

 C =  confidence level (%) 

  = degrees of freedom = n – 1 

 n =  sample size 

 sx = sample standard deviation. 

  

Ideally, confidence levels should be commensurate with what MTE manufacturers consider to be 

the maximum allowable false accept risk (FAR).35  The general requirement is to minimize the 

probability of shipping an MTE item with nonconforming (or out-of-compliance) performance 

characteristics.  In this regard, the primary factor in setting the maximum allowable FAR may be 

the costs associated with shipping nonconforming products. 

 

Unfortunately, manufacturers don’t commonly report confidence levels for their MTE 

specifications.  In fact, the criteria and motives used by manufacturers to establish MTE 

specifications are not often apparent.  Most MTE manufacturers see the benefits, to themselves 

and their customers, of establishing specifications with high confidence levels.  However, 

competition between MTE manufacturers can result in unrealistically optimistic specifications 

that, in-turn, can result in excessive out-of-tolerance occurrences.36 

 

Alternatively, some manufacturers may test the entire produced MTE model population to ensure 

that individual items are performing within specified limits prior to shipment.  However, this 

compliance testing process does not ensure a 100% probability (or confidence level) that the 

customer will receive an in-tolerance item.  The reasons for this include 

 

1. Measurement uncertainty associated with the manufacturer MTE compliance 

testing process.  

2. MTE bias drift or shift resulting from shock, vibration and other environmental 

extremes during shipping and handling. 

 

Manufacturers may account for the uncertainty in their testing and measurement processes by 

using a higher confidence level (e.g., 99.9%) to establish larger specification limits or by 

                                                 
34 In this context, confidence level and containment probability are synonymous, as are confidence limits and containment limits.  
35 From a producer or manufacturer’s perspective, false accept risk is the probability of accepting and shipping a nonconforming 

item. 
36 See for example, Deaver, David: “Having Confidence in Specifications,” proceeding of NCSLI Workshop and Symposium, 

Salt Lake City, UT, July 2004. 
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employing arbitrary guardbanding37 methods and multiplying factors.  In either case, the 

resulting MTE specifications are not equivalent to 100% confidence limits.   

 

Some manufacturers also conduct special environmental and accelerated life testing on a 

population subset to quantify the effects of potential shipping and handling stresses.  They might 

even include separate specifications for these effects.  However, not all MTE manufacturers 

incorporate these rigorous practices.   

 

4.5.2 Error Distributions 

MTE performance characteristics, such as nonlinearity, repeatability, hysteresis, resolution, 

noise, thermal stability and zero shift constitute sources of measurement error.  As discussed in 

Chapter 2, measurement errors are random variables that follow probability distributions. 

Therefore, MTE performance characteristics are also considered to be random variables that 

follow probability distributions.  

 

This concept is important to the interpretation and application of MTE specifications because an 

error distribution allows us to determine the probability that a performance characteristic is in 

conformance with its specification.  

 

Typically, manufacturers do not identify an underlying distribution for performance 

specifications.  This might imply that a specification simply bounds the range of values.  For the 

sampled MTE model specifications described in section 4.5.1., the performance characteristics of 

an individual unit may vary from the population mean.  However, the majority of the units 

should perform well within the specification limits.  Accordingly, a central tendency exists that 

can be described by the normal distribution.  

 

If the limits are asymmetric about a specified nominal value, it is still reasonable to assume that 

individual MTE performance characteristics will tend to be distributed near the nominal value.  

In this case, the normal distribution may still apply.  However, the lognormal or other 

asymmetric distribution may be more applicable. 

 

There are a couple of exceptions when the uniform distribution would be applicable.  These 

include digital output resolution error and quantization error resulting from the digital conversion 

of an analog signal.  In these instances, the specifications limits, ,  Lres and  Lquan, would be 

100% confidence limits defined as 

 

 
2

res
h

L    (4-2) 

and 

 
12

quan n

A
L


    (4-3) 

where  

 h  =  least significant display digit 

 A =  full scale range of analog to digital converter 

 n = quantization significant bits. 

 

                                                 
37 Guardbands are supplemental limits used to reduce false accept risk during calibration and testing.   
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4.5.3 Combining Specifications 

In testing and calibration processes, an MTE performance characteristic is identified as being  

in-tolerance or out-of-tolerance.  In some cases, the tolerance limits are determined from a 

combination of MTE specifications.  For example, consider the accuracy specifications for the 

DC voltage function of a Fluke 8062A digital multimeter.38 

 

For a displayed reading of 5 VDC, the accuracy specification is reported as  (0.07% Reading + 

2 digits) and the resolution as 1 mV.  In this case, the accuracy specification is   (0.07% 

Reading + 2 mV).39  To compute the combined accuracy specification, we must convert the % 

Reading to a value in mV units. 

 

0.07% Reading = (0.07/100)  5 V  1000 mV/V =  3.5 mV 

 

The total accuracy specification for the 5 V output reading would then be  (2.5 mV + 2 mV) or 

 5.5 mV.   

 

For another example, consider the tolerance specifications for different gage block grades 

published by NIST.40  Suppose we want to compute the combined tolerance limits for a Grade 2 

gage block with 20 mm nominal length.  There are two sets of specification limits.  The first 

specification limits (+0.10 m, -0.05 m) are asymmetric, while the second specification limits 

( 0.08 m) are symmetric.  Consequently, the combined tolerance limits will be asymmetric and 

upper and lower tolerances (e.g., +L1, -L2) must be computed.   

 

There are two possible ways to compute values for L1 and L2 from the specifications: linear 

(additive) combination or root sum square (RSS) combination.   

 

1. Linear Combination    

L1 = 0.10 + 0.08 = 0.18 

L2  =  0.05 + 0.08 = 0.13 

 

2. RSS Combination 

   
2 2

1 0.10 0.08 0.0164 0.13L      

   
2 2

2 0.05 0.08 0.0089 0.09L      

 

If the specifications are interpreted to be additive, then the combined tolerance limits for the 20 

mm Grade 2 gage block are +0.18 m, -0.13 m.  Alternatively, if they are combined in RSS, 

then the resulting tolerance limits are +0.13 m, -0.09 m.   

   

                                                 
38 Specifications from 8062A Instruction Manual downloaded from www.fluke.com 
39 Understanding Specifications for Precision Multimeters, Application Note Pub_ID 11066-eng Rev 01, 2006 Fluke 

Corporation. 

40 The Gage Block Handbook, NIST Monograph 180, 1995. 
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Linear or RSS specification combination cannot be used for MTE that have complex 

performance characteristics.  For example, consider the specifications for a Transducer 

Techniques MDB-5-T load cell .41 

 

The load cell sensing element is a resistance-based strain gauge that requires an external 

excitation voltage.  This load cell has a rated output of 2 mV/V for loads up to 5 lbf which 

equates to a nominal sensitivity of 0.4 mV/V/lbf.  Therefore, the load cell output is a function of 

the excitation voltage and the applied load. 

 

 ExoutLC W S V    (4-4) 

where 

 

 W = Applied load or weight 

 S = Load cell sensitivity 

 VEx = Excitation voltage 

 

Equation (4-4) shows the mathematical relationship between the physical input (i.e., weight) and 

the electrical output (i.e., voltage) of the load cell.42  This relationship is called a transfer 

function.   

 

According to the specifications, the load cell output will be affected by the following error 

sources: 

 

 Excitation Voltage,  0.25 V 

 Nonlinearity,  0.05% of R.O. 

 Hysteresis,  0.05% of R.O. 

 Noise,  0.05% of R.O. 

 Zero Balance,  1% of R.O. 

 Temperature Effect on Output,  0.005% of Load/F 

 Temperature Effect on Zero,  0.005% of R.O./F 

 

If the load cell is tested or calibrated using a weight standard, then any error associated with the 

weight should also be included. 

 

Equation (4-4) needs to be modified to account for these error sources.  Unfortunately, given the 

assortment of specification units, the error terms cannot simply be added at the end of the 

equation.  The appropriate load cell output equation is expressed in equation (4-5). 

 

  F F Exout s out zeroLC W TE TR S NL Hys NS ZO TE TR V                (4-5) 

 

where 

 Ws = Wn + We     (4-6) 

 

                                                 
41 Specifications obtained from www.ttloadcells.com/mdb-load-cell.cfm 
42 The validity of this equation depends on the use of appropriate units for the variables, W, S and VEx. 
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 VEx = Vn + Ve (4-7) 

and 

  

 Wn = Nominal or stated value of weight standard 

 We = Bias of weight standard  

 Vn = Nominal excitation voltage 

 Ve = Excitation voltage error 

 TEout = Temperature effect on output 

 TRF = Temperature range in F 

 NL = Nonlinearity 

 Hys =  Hysteresis 

 NS = Noise and ripple 

 ZO = Zero offset 

 TEzero = Temperature effect on zero 

  

Equations (4-5) through (4-7) constitute an error model for the load cell output.  As discussed in 

Chapter 2, given some knowledge about the error distributions, the variance addition rule can be 

applied to estimate the uncertainty in the load cell output voltage for a given applied load.  

 

This procedure involves some additional concepts and methods that are covered in subsequent 

chapters.  A detailed uncertainty analysis of a load measurement system is presented in  

Chapter 7.    
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CHAPTER 5:  DIRECT MEASUREMENTS  
 

In direct measurements, the quantity of interest (i.e., subject parameter or measurand) is obtained 

directly by measurement and is not determined indirectly by computing its value from the 

measurement of other variables or quantities.  Examples of direct measurements include, but are 

not limited to the following: 

 

 Measuring the length of an object with a ruler or micrometer. 

 Measuring the output from a DC voltage reference with a voltmeter. 

 Measuring the temperature of a substance using a liquid-in-glass thermometer.  

 

In this chapter, the analysis of a micrometer calibrated with a gage block is used to illustrate the 

basic concepts and methods used to estimate uncertainty for direct measurements.  The general 

uncertainty analysis procedure includes the following the steps outlined in Chapter 2: 

 

1. Define the Measurement Process 

2. Develop the Error Model 

3. Identify Error Sources and Distributions 

4. Estimate Uncertainties 

5. Combine Uncertainties 

6. Report Analysis Results  

 

5.1 Define the Measurement Process 

In this example, a 0-25 mm digital micrometer is calibrated at 10 mm nominal length using a 

Class 2 (Grade 2) gage block set.  Multiple readings of the 10 mm gage block length are taken 

with the micrometer.  The repeat readings observed with the micrometer are listed in Table 5-1.  

 

Table 5-1.  Micrometer Measurements  

 

Reading 

 

Length (mm) 

Deviation from 

Nominal (m) 

1 10.003 3 

2 10.002 2 

3 10.003 3 

4 10.004 4 

5 10.001 1 

6 10.005 5 

7 10.002 2 

8 10.004 4 

 

In this analysis, the quantity of interest is the average length obtained from the micrometer 

measurements corrected to a standard reference temperature of 20 C.  This value will be 

reported along with its estimated total uncertainty.  The results of the uncertainty analysis will be 

used to determine if the micrometer is within the manufacturer specified tolerance limits. 
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5.1.1 Gage Block Specifications 

The tolerance specifications for the Grade 2 gage block set are obtained from tabulated data 

published by NIST.43  Subsets of the data are listed in Tables 5-2 and 5-3.  

 

Table 5-2.  Tolerance Grades for Metric Gage Blocks (m) 

Nominal Grade .5 Grade 1 Grade 2 Grade3 

< 10 mm 0.03 0.05 +0.10, -0.05 +0.20, -0.10 

< 25 mm 0.03 0.05 +0.10, -0.05 +0.30, -0.15 

< 50 mm 0.05 0.10 +0.20, -0.10 +0.40, -0.20 

< 75 mm 0.08 0.13 +0.25, -0.13 +0.45, -0.23 

< 100 mm 0.10 0.15 +0.30, -0.15 +0.60, -0.30 

   

Table 5-3.  Additional Tolerance for Length, Flatness, and Parallelism (m) 

Nominal Grade .5 Grade 1 Grade 2 Grade3 

< 100 mm  0.03   0.05  0.08  0.10 

< 200 mm    0.08  0.15  0.20 

< 300 mm   0.10  0.20  0.25 

< 500 mm   0.13  0.25  0.30 

 

Gage block length is defined at the following standard reference conditions: 

 

 temperature  =  20 C (68 F) 

 barometric pressure =  101.325 KPa (14.7 psia) 

 water vapor pressure =  1.33 KPa (10 mm of mercury) 

 CO2 content of air  =  0.03%. 

 

Only temperature has a measurable effect on the physical length of the gage block as a result of 

thermal expansion or contraction.  The nominal coefficient of thermal expansion for gage block 

steel is 11.5  10-6/C.  According to ANSI/ASME,44 the maximum allowable limits for the 

coefficient of thermal expansion are  1  10-6/C.  

 

5.1.2 Micrometer Specifications 

Manufacturer specifications for the micrometer state a digital resolution of 1 m and error 

(tolerance) limits of   4 m.  For the purposes of this analysis, the coefficient of thermal 

expansion for the micrometer is taken to be 5.6  10-6/deg C with corresponding error limits of  

 0.5  10-6/C.  

 

5.1.3  Environmental Temperature Specifications 

During the measurement process, an average laboratory temperature of 23 C was monitored and 

maintained.  The tolerance limits of the temperature monitoring device are  2 C. 

 

                                                 
43 The Gage Block Handbook, NIST Monograph 180, 1995. 

44 Precision Gage Blocks for Length Measurement (Through 20 in. and 500 mm), ANSI/ASME B89.1.9M-1984. 
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5.2  Define the Error Model 

In this example, a 10 mm nominal gage block is measured with a micrometer and the average 

length reported.  Therefore, the basic measurement model for the length, x, is defined as 

 

 xtruex x    (5-1) 

where 

 

 xtrue =  true gage block length 

  x  = total error in the length measurement. 

 

The error model for x is the sum of the errors encountered during the length measurement 

process and can be generally expressed as 

 

 x = 1 + 2 + ... + n (5-2) 

 

where the numbered subscripts signify the different error sources.   

 

5.3 Identify Error Sources and Distributions 

In the length measurement process, we must account for the following errors: 

 

 Bias in the value of the 10 mm gage block length, Gbias.   

 Error associated with repeat measurements, ran. 

 Error associated with the digital resolution of the micrometer, Mres. 

 Operator bias during the micrometer measurement process, op. 

 Environmental factors errors resulting from thermal expansion of the gage block 

and the micrometer, env. 

 

The micrometer bias is not included, because this is what is estimated in the uncertainty analysis.   

The error model for the length measurement can now be expressed as 

 

 x  =  Gbias + ran + Mres + op + env. (5-3) 

 

The specifications for the gage block and micrometer do not provide insight about which 

probability distribution to apply to each of these error sources.  However, as discussed in  

Chapter 4, Section 4.5.2, error distributions often exhibit a central tendency.  

 

In general, if an error distribution has a central tendency and the error limits are symmetric, the 

normal distribution is applicable.  If the error limits are not symmetric, the lognormal or other 

asymmetric distribution may be more applicable.  For the length measurement example, the 

uniform distribution is only applicable to the micrometer digital resolution error.  More 

discussion on the selection and application of error distributions for the length measurement 

example are discussed in the following section. 
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5.4 Estimate Uncertainties 

With the exception of repeatability or random error, the uncertainty in each error source must be 

estimated heuristically from the containment limits, L, containment probability, p, and the 

inverse error distribution function, F-1(p), as shown in equation (5-4). 

 

 
-1F ( )

L
u

p
  (5-4)  

 

As discussed in Chapter 4, equipment specifications should convey key information about the 

performance characteristics of the MTE.  For the most part, manufacturer specification data 

include limits for error sources that affect the MTE performance.  Information about the 

confidence level associated with these specification limits or the applicable error distribution are 

not often provided. 

 

Consequently, it is a good practice to thoroughly review the appropriate MTE specification 

information and highlight items that need clarification.  The manufacturer should then be 

contacted for additional information and clarification as required.  If this information is not 

obtainable from the manufacturer, then alternative sources should be employed including your 

own experience and best judgement.  

 

5.4.1 Gage Block Bias 

The gage block specifications indicate that the length bias is comprised of two error sources 

 

   bias  =  tol + lfp (5-5) 

 

where tol is the tolerance error and lfp is the error due to length, flatness and parallelism. 

Applying the variance addition rule, 

 

 var(bias) = var(tol + lfp) (5-6) 

  =  var(tol) + var(lfp) + 2cov(tol, lfp)  

   

where cov(tol, lfp) is the covariance between tol and lfp.  From Axiom 2 and equation (5-6), the 

gage block bias uncertainty can be expressed as 

 

 2 2
,2Gbias tol lfp tol lfp tol lfpu u u u u   . (5-7) 

 

The tolerance error limits for Grade 2 gage blocks with nominal length less than 25 mm are  

+ 0.10 m and – 0.05 m.  Given these skewed limits, the lognormal distribution should be 

applicable for tol.  The error limits for length, flatness and parallelism for Grade 2 gage blocks 

with nominal length less than 100 mm are   0.08 m.  Therefore, the normal distribution should 

be applicable for lfp.   

 

From experience, we know that gage block specifications typically represent a high in-tolerance 

or containment probability.  In this analysis, we will assume that a 99% containment probability 

applies for both error source limits.   

 



 

48 

5.4.1.1  Tolerance Error 

To compute the uncertainty in the tolerance error, utol, we refer to the lognormal distribution plot 

shown in Figure 5-1, where the mode, M, is equal to 10 mm, the lower containment limit, L1,  

is – 0.05 m, the upper containment limit, L2, is + 0.10 m and the containment probability is 

99%.  

 

 

Figure 5-1.  Right-handed Lognormal Distribution 

 

As discussed in Appendix B, section B.2, the probability density function for a right-handed 

lognormal distribution is given by 

 

2
21

( ) exp ln 2
2

/q
f

m qq


 

 

    
    

     

 

 

where q is the physical limit for , m is the population median and  is the shape parameter.  The 

uncertainty, utol, is the population standard deviation, , which is defined as  

 

2 2/ 2| | 1m q e e     . 

 

The population median is defined as   
2

1m q e
 

  
 

. 

 

The unknown variables q and   must be solved for iteratively using the containment limits and 

containment probability.45  The numerical iteration was conducted off-line and the resulting 

uncertainty estimated to be 

 

utol =  0.0287 m. 

 

5.4.1.2  Length, Flatness and Parallelism Error 

The uncertainty due to gage block length, flatness and parallelism error can be computed from 

the  0.08 m containment limits, 99% containment probability and the inverse normal 

distribution function, -1(.).  The inverse normal distribution function, can be found in statistics 

                                                 
45 Additional guidance is provided in Appendix B, Section B.2. 

Mq

L2L1

f()



L2L1
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texts and in most spreadsheet programs. 

 

1

0.08 μm 0.08 μm

1 0.99 2.5758

2

lfpu


 
 

  
 

 = 0.0311 m. 

 

5.4.1.3  Gauge Block Bias Uncertainty 

There is no reason to believe that there is any correlation between the gage block tolerance error 

and the error due to length, flatness and parallelism.  Therefore, the total uncertainty in the gage 

block bias is estimated to be 

 

2 2

2

(0.0287 μm) (0.0311 μm)

0.00179 μm

0.042μm.

Gbiasu  





 

 

5.4.2 Repeatability (Random Error)  

The uncertainty in the repeatability or random error in the length measurement is determined 

from the repeat measurements.  As discussed in Chapter 3, the uncertainty due to repeatability is 

equal to the standard deviation of the sample data.  The standard deviation of the sample of 

length measurements is given by  

 

 
2

1

1

1

n

x i
i

s x x
n 

 


 

 

where xi is the ith reading and the mean value of the sample is computed from 

 

 1 2

1
... nx x x x

n
    . 

 

The mean value of the length measurements is  

 

 10.003 10.002 10.003 10.004 10.001 10.005 10.002 10.004
mm

8

10.003 mm

x
      





 

 

and the differences between the measured values and the mean value are 
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1

2

3

4

5

6

10.003 10.003 0.000 mm = 0 m

10.002 10.003 0.001 mm = 1 m

10.003 10.003 0.000 mm = 0 m

10.004 10.003 0.001 mm = 1 m

10.001 10.003 0.002 mm = 2 m

10.005 10.003 0.002 mm  2 

x x

x x

x x

x x

x x

x x

    

      

    

    

      

    

7

8

m

10.002 10.003 0.001 mm 1 m

10.004 10.003 0.001 mm  1 m.

x x

x x



       

     

 

 

The standard deviation is 

               
2 2 2 2 2 2 2 2

0 1 0 1 2 2 1 1
μm

7

12
μm 1.71 μm 1.31 μm .

7

xs
         



  

 

 

Repeatability uncertainty is 

 

, 1.31 μm x ran xu s   

 

and the repeatability uncertainty in the mean value is 

 

,

1.31μm
0.463μm.

8

x
x ran

s
u

n
    

 

Since the mean value is the quantity of interest in this analysis, ,x ranu  should be included in the 

overall uncertainty estimate.  

 

5.4.3 Resolution Error 

To estimate the uncertainty due to resolution error, we note that the micrometer has a digital 

readout.  Therefore, the resolution error can be assumed to be uniformly distributed.  The 

resolution uncertainty is estimated from the  0.5 m containment limits, 100% containment 

probability and the inverse uniform distribution function.   

 

0.5 μm
0.289 μm

3
resu    

 

5.4.4 Operator Bias 

Inconsistencies as the operator uses the micrometer to measure the gage block length are most 

likely accounted for in the repeatability or random error.  However, we still need to account for 

the possibility of some consistent or systematic operator bias during the measurement process.   

Some possible sources of operator bias include how the operator positions the micrometer on the 

gauge block and the amount of clamping force applied to the gage block.   
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Since we do not know the sign or magnitude of the operator bias, we consider it to be a normally 

distributed error source.  To estimate the uncertainty in the operator bias, we will assume 

containment limits that are based on half of the resolution, with a 90% containment probability.  

 

   

1

0.5 1 μm 0.5 μm
0.304 μm

1 0.90 1.6449

2

opu


  
 

  
 

. 

 

Note:  The containment limits for the operator bias are not necessarily based on 

resolution error.  Best judgement and knowledge should be used in developing 

appropriate containment limits and containment probability. 

 

5.4.5 Environmental Factors Error 

For this error source, we are interested in determining the uncertainty in the length measurement 

due to thermal expansion effects.  In this case, we must consider the thermal expansion of the 

gage block and the micrometer.  We must also account for the uncertainty in the environmental 

temperature reading and the uncertainty in the expansion coefficients. 

 

The change in length measurement, x, due to the temperature departure from 20 C nominal, 

results from the expansion (or contraction) of the gage block and the micrometer.  The net 

change is computed from the following equation 

 

 x  = xnom  (g –  m)  T     (5-8) 

where  

 xnom = nominal gage block length  =  10 mm 

 g = gage block expansion coefficient  =  11.5  10-6/C 

 m = micrometer expansion coefficient  =  5.6  10-6/C 

 T = ambient temperature – reference temperature  =  23 C – 20 C  =  3 C. 

 

Therefore, the change in length is computed as 

 

 x   =  10 mm  (11.5 –  5.6)  10-6/C  3 C 

  = 1.77  10-4 mm 

  = 0.177 m. 

 

The length measurement can be referenced back to 20 C by subtracting 0.177 m from the data 

sample average.  However, we must account for the error in this length correction due to errors 

in the monitoring temperature and expansion coefficients.  The error model is developed as 

follows:  

 

 x =  x – xtrue (5-9) 

where 

      .
g mtrue g m Tx T     

        
  

 (5-10) 

 

Substituting equations (5-8) and (5-10) into equation (5-9) yields 
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.

g m

g m

x nom nom nom g T nom m T

nom T nom T

x T x T x x

x x

 

 

      

   

  

 

     

 
 (5-11) 

 

The last two terms in equation (5-11) are referred to as second order terms and are considered to 

be small compared to the other first order terms.  Neglecting second order terms, we can express 

the length change error equation in a simpler form. 

     

  
g mx nom nom nom g m Tx T x T x              (5-12) 

 

The coefficients for 
g

 , 
m

  and T  are actually the partial derivatives of x with respect to 

g,  m and T. 

 

nom g
g

x
x T c


  


,  nom m

m

x
x T c


   


  and   nom g m T

x
x c

T



  


   

 

Therefore, the length change error can be expressed as  

 

 
g mx g m T Tc c c          (5-13) 

 

where cg, cm and cT are sensitivity coefficients that determine the relative contribution of the 

temperature and expansion coefficient errors to the length change error. 

 

Applying the variance operator to equation (5-13) we have 

    

 

   

 

   

2 2 2

var var

var( ) var( ) var( ) 2 cov ,

2 cov , 2 cov , .

g m

g m g m

g m

x g m T T

g m T T g m

g T T m T T

c c c

c c c c c

c c c c

 

   

 

   

    

   

  

 

   

  

   

 

  (5-14) 

 

From Axiom 2, the uncertainty in the length change error can be expressed as 

 

 

2 2 2 2 2 2
,

, ,

2

2 2

T
T g m g mg m

x
T T T T Tg g m m

g m g m

g m T

c u c u c u c c u u

u
c c u u c c u u

     

    

    



     



 





    

  


 

 (5-15) 

 

where the last three terms account for any error correlations. 

 

There is no physical reason to believe that a correlation exists between the expansion coefficient 

errors.  Similarly, there shouldn’t be any correlation between the temperature error and the 

expansion coefficient errors.  Therefore,  
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, 0
g m    ,  , 0

Tg
 


 ,  , 0

Tm
 


  

 

and the uncertainty in the length change error can be expressed as 

 

 
2 2 2 2 2 2

x Tg m
Tg mu c u c u c u

 
    

   . (5-16) 

 

The appropriate probability distribution for the temperature error and expansion coefficient 

errors is the normal distribution.  Therefore, the associated uncertainties can be estimated from 

the containment limits, containment probability and the inverse normal distribution function.  In 

this analysis, we will assume 95% containment probability for all three error sources. 

 

The uncertainty in the temperature error is estimated from   2 C containment limits and a 95% 

containment probability. 

 

1

2 2
1.02 C

1 0.95 1.9600

2

T
u


   

 
  

 

 

 

Note:  In this example, only the error resulting from the temperature measuring 

device is considered.  However, other error sources resulting from variation in the 

room temperature and in the gage block and micrometer temperatures during the 

measurement process may also need to be considered. 

 

The uncertainty in the gage block expansion coefficient is estimated from  1  10-6/C 

containment limits and a 95% containment probability. 

 
6 6

6
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   
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 
  

 

 

 

The uncertainty in the micrometer expansion coefficient is estimated from  0.5  10-6/C 

containment limits and a 95% containment probability. 

 
6 6

6

1

0.5 10 / C 0.5 10 / C
0.255 10 / C

1 0.95 1.9600

2

m
u



 




   
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 
  

 

 

 

The corresponding sensitivity coefficients are  

 

 cg  =  10 mm  3 C  =  30 mm-C  =  3  104  m-C 

 cm  =   –10 mm  3 C =  – 30 mm-C  =  – 3  104  m-C 

 cT  =   10 mm  (11.5 – 5.6)  10-6/C  =  5.9  10-5 mm/C = 5.9  10-2 m/C 
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and the uncertainty in the length change error is computed to be 

 

           
2 2 2 2 2 24 6 4 6 2

4 5 3

3

3 10 0.510 10 3 10 0.255 10 5.9 10 1.020 μm

= 2.34 10 5.85 10 3.62 10 μm

= 3.91 10 μm 0.063 μm .

x
u

  

  



           

    

 

 

 

Thus, the uncertainty due to environmental factors error is 

 

0.0625 μm
xenvu u

  . 

 

5.5 Combine Uncertainties 

With the variance addition rule and Axiom 2, we have a method for combining the measurement 

process uncertainties uGbias, ,x ranu , uMres, uop and uenv.  No correlations should exist between 

measurement process errors, so the uncertainty in the length measurement can be expressed as 

 

 2 2 2 2 2
,x Gbias x ran Mres op envu u u u u u      . (5-17) 

   

Therefore, the uncertainty in the average length measurement is computed to be 

 

2 2 2 2 2(0.042) (0.463) (0.289) (0.304) (0.063) μm

= 0.396 μm 0.629μm.

x
u     



 

 

The effective degrees of freedom, eff, for the combined uncertainty can be estimated using the 

Welch-Satterthwaite formula 
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,
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7
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Gbias x ran Mres op env

op x ranx ranGbias Mres env

u

uuu u u

u u

u uuu u u



 



    



   

  

   
   

 (5-18) 

 

The degrees of freedom for the combined uncertainty are computed to be 

 

 
4

4

0.629 μm
7 7 3.4 23.8

(0.463 μm)
eff       

 

and are rounded to the nearest whole number, 24. 
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5.6 Report Analysis Results 

All measurement uncertainties relevant to the micrometer calibration process have been taken 

into account and the analysis results can now be evaluated.  In calibration, uncertainty analysis is 

important for two main reasons.  First, to identify excessive uncertainties due to sources of error 

in our measurement process.  Second, to communicate the quantity of interest and its associated 

uncertainty or to decide whether the quantity is in-tolerance. 

 

5.6.1  Average Measured Value and Combined Uncertainty 

As previously stated, the quantity of interest is the average length measurement corrected to  

20 C.  In this analysis, the average length measurement at 20 C is computed to be 

 

10.003 mm 0.000177 mm 10.0028 mmx     

 

with a combined uncertainty of 0.629 m with 24 degrees of freedom. 

 

5.6.2  Measurement Process Errors and Uncertainties 

The measurement process errors, distributions, uncertainties and degrees of freedom are 

summarized in Table 5-4.  The relative contributions of the measurement process uncertainties to 

the overall uncertainty in the average length measurement are shown in Figure 5-2.  The pareto 

chart46 shows that the uncertainties due to repeatability, operator bias, and micrometer resolution 

are the largest contributors to the 0.629 m combined uncertainty. 

 

Table 5-4.  Measurement Process Uncertainties for Micrometer Calibration 

Error  

Source 

Containment  

Limits 

Containment 

Probability 

Error 

Distribution 

Standard 

Uncertainty 

Estimate 

Type 

Deg. of 

Freedom 

Gage Block Bias +0.18, -0.13 99.00 Lognormal 0.042 m B  

Repeatability    0.463 m A 7 

Micrometer 

Resolution 
 0.5 100.00 Uniform 0.289 m B  

Operator Bias  0.5 90.00 Normal 0.304 m B  

Environmental 

Factors 
 0.123 95.00 Normal 0.063 m B  

 

                                                 
46  A Pareto (pronounced puh-RAY-toe) chart is a special type of bar chart where the values plotted are arranged in descending 

order of importance. The chart is based on the Pareto principle, which states that when several factors affect a situation, a few 

factors will account for most of the impact. 
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Figure 5-2.  Pareto Chart for Micrometer Calibration  

 

5.6.3  Confidence Limits 

The combined uncertainty and degrees of freedom can be used to compute confidence limits that 

are expected to contain the true value, , with some specified confidence level or probability, p.  

The confidence limits are expressed as  

 

 / 2, x
x t u    (5-19) 

 

where the multiplier, t/2, is the t-statistic and  = 1- p.  

 

In this analysis, we will use a 95% confidence level (i.e., p = 0.95).  With a corresponding  

t-statistic t0.025,24 = 2.0639, the confidence limits are computed to be 

 

10.0028 mm 2.0639 0.629 μm    or  10.0028 mm 1.30 μm . 

 

5.6.4  In-tolerance Probability 

The last step in this analysis example is to determine if the micrometer measurement of the  

gage block 10 mm nominal length is within the  4 m manufacturer specified tolerance limits.   

To do this, we must evaluate the micrometer bias, the gage block bias and the uncertainties in 

these biases.  

 

Recall from equation (5-1), the measured value x is defined by 

 

xtruex x    

where 

 xtrue =  true gage block length 

  x  = total error in the length measurement. 

 

The nominal gage block length, xnom, is related to the true length by 

 

 Gbiastruenomx x    (5-20) 

Repeatability

Operator Bias

Environmental

Factors

Gage Block 

Bias

Percent Contribution to Length Measurement Uncertainty

0 10 20 30 40 50

Micrometer

Resolution
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where 

 Gbias  = bias in the gage block length. 

 

The difference between the measured value and the nominal gage block length is defined as 

 

    
nom

true x true Gbias

x Gbias

x x

x x



 

 

 

   

 

 (5-21) 

 

where  is a measure of the micrometer bias, Mbias.  Substituting equation (5-3) into equation  

(5-21), the uncertainty equation for Mbias is 

 

   
   

2 2 2 2

var var
Mbias x Gbias ran Mres op env

ran Mres op env

u

u u u u

      



     

  

 (5-22) 

 

Replacing uran in equation (5-22) with ,x ranu  = 1.31,  the combined uncertainty is computed to be 

 

2 2 2 2(1.31) (0.289) (0.304) (0.0626) μm

= 1.896 μm = 1.377 μm

Mbias
u    

 

 

The degrees of freedom for the combined uncertainty is computed to be  

 

 
4 4

4 4
,

1.377 μm
7 7 7 1.22 8.5

(1.31 μm)

x
eff

x ran

u

u


         

 

where the value is rounded to the nearest whole number, 9.    

 

The measurement results indicate that the average deviation from the gage block nominal length 

is   = + 2.8 m.  The confidence limits for a single value of  are expressed as 

 

 / 2, Mbias
t u    . (5-23) 

 

For a 95% confidence level, t0.025,9 = 2.2622 and the confidence limits for  (e.g., Mbias) are 

computed to be  

 

2.8 μm 2.2622 1.377 μm   or 2.8 μm 3.12 μm  

 

Figure 5-3 shows the distribution for Mbias relative to the manufacturer specification limits.  The 

shaded area depicts the probability that Mbias falls outside of the micrometer specification limits.   

 

There is a much higher probability that the micrometer bias is within the manufacturer 
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specifications than outside them.  However, the in-tolerance probability needs to be computed 

and evaluated to decide whether or not the micrometer’s performance is acceptable for its 

intended application. 

 

Figure 5-3.  Micrometer Bias Distribution 

 

In this decision-making process, it is important to account for the fact that the observed deviation 

from nominal, , is also affected by the bias in the gage block length, Gbias.  Consequently, the 

actual micrometer bias may be larger or smaller than .   

 

The value of Gbias is unknown, but its uncertainty was estimated to be uGbias = 0.0423 m.   

This uncertainty is much smaller than the micrometer bias uncertainty, uMbias = 1.377 m.  

Therefore, one might deduce that Gbias has a minor impact on .  However, a small value for  

uGbias does not preclude a large value for Gbias. 

 

To adequately determine micrometer in-tolerance probability, it is also necessary to estimate 

Gbias and the probability that Gbias is within its specified tolerance limits.  The calculation of 

biases and in-tolerance probabilities is beyond the scope of this document.  Readers are referred 

to NASA Measurement Quality Assurance Handbook Annex 4 – Estimation and Evaluation of 

Measurement Decision Risk. 

- 4 m + 4 m

+ 2.8 m

0 m

f(Mbias)

Mbias
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CHAPTER 6:  MULTIVARIATE MEASUREMENTS 
 

This chapter discusses the approach used to estimate the uncertainty of a quantity that is 

computed from measurements of two or more attributes or parameters.  The multivariate 

uncertainty analysis procedure consists of the following steps: 

 

1. Develop the Parameter Value Equation 

2. Develop the Error Model 

3. Develop the Uncertainty Model  

4. Identify the Measurement Process Errors 

5. Estimate Measurement Process Uncertainties 

6. Compute Uncertainty Components 

7. Account for Cross-Correlations 

8. Combine Uncertainty Components 

9. Report Analysis Results 

 

The procedure for developing error models and uncertainty models from the parameter value 

equation is presented. Identifying measurement process errors, estimating their uncertainties and 

accounting for cross-correlations is also presented.  The volume occupied by a cylinder obtained 

from length and diameter measurements is used to illustrate the concepts and methods of 

conducting a multivariate uncertainty analysis.   

 

6.1 Develop the Parameter Value Equation 

The parameter value equation is a mathematical relationship between the quantity of interest 

(subject parameter) and the variables or quantities to be measured.  The parameter value equation 

is also referred to as the governing or system equation.  For example, consider a case with three 

measured variables or quantities, x, y, z 

 

  , ,q f x y z  (6-1)  

where 

 q  =  subject parameter or quantity of interest 

 f  =  mathematical function that relates q to measured quantities x, y, and z. 

 

6.1.1 Cylinder Volume Example 

In this analysis example, a steel cylinder artifact with nominal design dimensions of 0.65 cm in 

length by 1.40 cm in diameter is measured with a micrometer.  The objective is to estimate the 

uncertainty in the cylinder volume measurement. 

 

The parameter value equation for the cylinder volume is given as 

 

 

2

2

D
V L

 
  

 
 (6-2)  

 

where L and D are the cylinder length and diameter, respectively.   
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From equation (6-2), we see that, to determine the cylinder volume, we need to measure the 

length and diameter.  The cylinder volume (i.e., parameter value) is then computed based on the 

values obtained for the length and diameter. 

   

6.2 Develop the Error Model 

The error model provides a mathematical relationship between the total error in the quantity of 

interest to the errors in the measured quantities.  The error model is determined from the 

parameter value equation using a first-order Taylor series approximation.47   

 

For example, the error model for q in terms of the error components x, y and y is developed by 

apply a first-order Taylor Series approximation to equation (6-1).     

 

 q x x y y z zc c c       (6-3) 

 

Note:  For a multivariate measurement, errors in the measured quantities are  

called error components. 

 

The coefficients, cx, cy, and cz are sensitivity coefficients that determine the relative contribution 

of the error components to the total error.  The sensitivity coefficients are defined as 

 

 , ,
x

f x y z q
c

x x

 
 

 
 , 

 , ,
y

f x y z q
c

y y

 
 

 
 , 

 , ,
z

f x y z q
c

z z

 
 

 
 

 

Note:  The sensitivity coefficients are constants computed at a specified set of 

values for x, y, and z. These may be measured values or other values that are 

relevant to the measurement process being analyzed.  

 

6.2.1 Cylinder Volume Example 

Errors in the length and diameter measurements contribute to the overall error in the estimation 

of the cylinder volume.   In this example, the error model for the cylinder volume equation is 

developed algebraically to illustrate how the sensitivity coefficients for the length and diameter 

errors obtained in this manner compare to coefficients obtained using partial derivatives.  

 

By definition, 

 0 VV V    

 0 DD D    

 0 LL L    

where 

 V 0 =  nominal or design volume     

 D0  =  nominal or design diameter  

 L0 = nominal or design length 

                                                 
47 Taylor Series, named after English mathematician Brook Taylor, allows the representation of a function as an infinite sum of 

terms calculated from its derivatives at a specified value.  This 1st order approximation is applicable to most measurement 

scenarios encountered in testing and calibration.  However, in the evaluation of stochastic processes, approximations may require 

the inclusion of 2nd order or higher terms. 
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 V = cylinder volume error 

 D = diameter measurement error 

 L = length measurement error 

 

Therefore, equation (6-2) can be expressed as 

   

  
2

0
0 0

2

D
V L

D
V L


  

 
   

 
. (6-4) 

 

By rearranging equation (6-4), we obtain an algebraic expression for the cylinder volume error. 

 

 

 

 

   

 

2
0

0 0

2 2
0 0

0 0

2 2 2
0 0 0 0 0

2 2 2 2 2
0 0 0 0 0 0 0 0 0

2

2 2

2
4 4

2 2
4 4

D

D D

D
V L

D
L

D L

D L D L L

D
L V

D D
L L

D D L D L

D L D L L D D D L


  


  

 
  

 
      

 
   

 

   
     

   

    

      

   (6-5)  

 

The higher order terms, 
2

0 D
L  , 02 D LD    and 

2

D L  , are considered to be small compared to the 

other first order terms.  Neglecting these terms, the cylinder volume error equation can be 

expressed in a simpler form. 

  

 

 2 2 2
0 0 0 0 0 0 0

2 2 2
0 0 0 0 0 0 0

2
0 0 0

2
4 4

4 4 2 4

2 4

V D L

D L

D L

D L D L D D L

D L D L D L D

D L D

 
  

   
 

 
 

   

   

 

 (6-6) 

 

Rearranging equation (6-6), yields 

 

 

2
0 0

0
2 2

V L D

D D
L    

 
  

 
. (6-7) 

 

The coefficients for L and D in equation (6-7) are actually the partial derivatives of V with 

respect to L and D. 

 

 

2

2
L

V D
c

L


  
   
  

 and 
2

D

V D
c L

D


  
   
  
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Therefore, the cylinder volume error model can be expressed as  

 

  V L L D Dc c     (6-8) 

 

where the sensitivity coefficients, cL and cD, determine the relative contribution of the errors in 

length and diameter measurements to the total measurement error. 

 

6.3 Develop the Uncertainty Model 

As discussed in Chapter 2, the uncertainty in a quantity or variable is the square root of the 

variable's mean square error or variance.  In mathematical terms, this is expressed as 

 

 var( )q qu  . (6-9) 

 

Applying the variance operator to equation (6-3) gives 

 

 
   

2 2 2 2 2 2

var var

2 2 2

q q x x y y z z

x x y y z z x y xy x y x z xz x z y z yz y z

u c c c

c u c u c u c c u u c c u u c c u u

   

  

   

     

 (6-10) 

 

where xy, xz and yz are the correlation coefficients for the errors in x, y and z. 

 

6.3.1 Cylinder Volume Example ............................................................................................ 

Applying the variance addition operator to equation (6-8), the uncertainty in the cylinder volume 

can be expressed as 

 

 
   

2 2 2 2

var var

2

V V L L D D

L L D D L D LD L D

u c c

c u c u c c u u

  



  

  

 (6-11) 

 

where LD is the correlation coefficient for the length and diameter errors.  

 

6.4 Identify Measurement Process Errors 

As discussed in Chapter 2, measurement process errors are the basic elements of uncertainty 

analysis.  Once these fundamental error sources have been identified, we can begin to develop 

uncertainty estimates. 

 

6.4.1 Cylinder Volume Example 

In this example, the measurement process error sources are: 

 

1. Bias in the micrometer readings (bias). 

2. Repeatability or random error resulting from different values obtained from 

measurement to measurement (ran). 

3. Resolution error due to the finite resolution of the micrometer readings (res). 

4. Operator bias on the part of the measuring technician (op). 
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5. Error resulting from any thermal or other correction due to a departure from 

nominal environmental conditions (env). 

 

The errors in length and diameter measurements, L  and D, can be expressed in terms of their 

constituent process errors. 

 

  L  =  Lbias + Lran + Lres + Lop + Lenv (6-12) 

and 

   D  =  Dbias + Dran + Dres + Dop + Denv. (6-13) 

 

For this example, the nominal or design specifications for the steel cylinder at 20 C are 

 

 Length (L0)  = 0.65 cm 

 Diameter (D0) = 1.40 cm 

 Volume (V0) = 1.0 cc 

 

and the measurement process specifications are 

 

Micrometer Bias:  0.1mm with 97.5% confidence 

Digital Resolution: 0.1 mm 

Ambient Temperature: 24 C  2.5 C with 95% confidence 

Thermal Expansion Coefficient for Steel:   5.3  10-6 / C  0.5  10-6 / C 

Thermal Expansion Coefficient for Micrometer:  1.2  10-6 / C  0.2  10-6 / C 

 

Repeat measurements of the cylinder length and diameter, collected in pairs, yielded the data 

listed in Table 6-1. 

 

Table 6-1.  Offset from Nominal Values 

Sample 

Number 

Length Offset 

(mm) 

Diameter Offset 

(mm) 

1 0.4 0.2 

2 0.3 0.3 

3 0.3 0.4 

4 0.4 0.5 

5 0.5 0.3 

6 0.3 0.2 

7 0.4 0.4 

 

6.5 Estimate Measurement Process Uncertainties 

The specification information and the data in Table 6-1 are used to estimate the process 

uncertainties for the cylinder length and diameter measurements.  The methods of uncertainty 

estimation are summarized below. 

 

 uLbias, uDbias - Measurement bias uncertainty is determined heuristically from   

   micrometer tolerance limits and in-tolerance probabilities. 

 uLran, uDran - Repeatability uncertainty is determined statistically from  
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   measurement data. 

 uLres, uDres - Resolution uncertainty is determined heuristically from the  

   micrometer resolution specification and containment probability. 

 uLop, uDop - Operator bias uncertainty is determined heuristically based on the  

   micrometer resolution and a containment probability. 

 uLenv, uDenv - Environmental factors uncertainty is determined heuristically  

   from tolerances and in-tolerance probabilities for the environment  

   monitoring equipment. 

 

6.5.1 Measurement Bias Uncertainty 

Measurement bias can be considered to be a normally distributed error source.  Therefore, the 

uncertainty in the micrometer bias can be expressed in terms of the  0.1 mm containment limits, 

97.5% containment probability, and the inverse normal distribution function,  (.) 
 

 1

0.1 mm

1 0.975 / 2

0.1 mm
0.045 mm = 0.0045 cm.

2.2414

biasu



    

 

 

 

The micrometer is used to measure cylinder length and diameter, so 0.0045 cm.Lbias Dbiasu u   

 

6.5.2 Repeatability Uncertainty 

As discussed in Chapter 3, repeatability uncertainty is equal to the standard deviation of the 

sample data. 

 

,x ran xu s   

where 

 
2

1

1

1

n

x i
i

s x x
n 

 


 

 

and xi is the ith reading and the mean value of the sample is computed from 

 

 1 2

1
... nx x x x

n
    . 

 

In this example, the length measurements are recorded in offset units from the nominal length, 

L0.  The mean of the offset values for the cylinder length is  

 

 0.4 0.3 0.3 0.4 0.5 0.3 0.4 mm

7

2.6 mm
0.37 mm = 0.037 cm

7

offsetL
     



 
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and the differences between the measured offset values and the mean offset value are 

 

1

2

3

4

5

6

0.4 0.37 0.03 mm

0.3 0.37 0.07 mm

0.3 0.37 0.07 mm

0.4 0.37 0.03 mm

0.5 0.37 0.13 mm

0.3 0.37 0.07 mm

offset offset

offset offset

offset offset

offset offset

offset offset

offset offset

offs

L L

L L

L L

L L

L L

L L

L

   

    

    

   

   

    

7
0.4 0.37 0.03 mm.et offsetL   

 

 

The standard deviation is 

 

             
2 2 2 2 2 2 2

0.03 0.07 0.07 0.03 0.13 0.07 0.03
mm

6

0.0343
mm 0.076 mm = 0.0076 cm.

6

offsetLs
        



 

 

 

Thus, the repeatability uncertainty for the cylinder length measurement is  

 

0.0076 cmLranu  . 

 

The mean or average cylinder length measurement is 

 

 

0

0.65 0.037 cm

= 0.687 cm

offset
L L L 

   

 

and the repeatability uncertainty in the mean cylinder length is 

 

0.0076
0.0029 cm

7
Lranu   . 

 

The mean length will be used to compute the cylinder volume, so Lranu  will be used in the  

combined uncertainty estimate. 

 

Similarly, the mean of the offset values for the cylinder diameter is  
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 0.2 0.3 0.4 0.5 0.3 0.2 0.4
mm

7

2.3
mm 0.33 mm = 0.033 cm

7

offsetD
     



 

 

 

and the differences between the measured offset values and the mean offset value are 

 

1

2

3

4

5

6

0.2 0.33 0.13 mm

0.3 0.33 0.03 mm

0.4 0.33 0.07 mm

0.5 0.33 0.17 mm

0.3 0.33 0.03 mm

0.2 0.33 0.13 mm

offset offset

offset offset

offset offset

offset offset

offset offset

offset offset

off

D D

D D

D D

D D

D D

D D

D

    

    

   

   

    

    

7
0.4 0.33 0.07 mm.set offsetD   

 

 

The standard deviation is 

 

             
2 2 2 2 2 2 2

0.13 0.03 0.07 0.17 0.03 0.13 0.07
mm

6

0.0743
mm 0.11 mm = 0.011 cm.

6

offsetDs
         



 

 

 

Thus, repeatability uncertainty for the cylinder diameter measurement is 

 

0.011cm.Dranu   

 

The mean or average cylinder diameter measurement is 

 

 

0

1.40 0.033 cm

= 1.433 cm

offsetD D D 

   

 

and the repeatability uncertainty in the mean cylinder diameter is 

 

0.011cm
0.0042 cm.

7
Dranu    

 

The mean diameter will be used to compute the cylinder volume, so Dranu  will be used in the 

combined uncertainty estimate. 
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6.5.3 Resolution Uncertainty 

To estimate the resolution uncertainty, we note that the micrometer has a digital readout.  

Therefore, the resolution error can be assumed to be uniformly distributed with  0.05 mm 

containment limits and 100% containment probability.  Therefore, the resolution uncertainty is 

computed to be 

 

 

0.05mm
0.029 mm 0.0029 cm

3
resu     

 

Since the micrometer is used to measure cylinder length and diameter, 

 

0.0029 cm.Lres Dresu u   

 

6.5.4 Operator Bias Uncertainty 

Operator bias can be considered to be a normally distributed error source.  To estimate operator 

bias uncertainty, we will assume containment limits that are based on roughly half of the 

resolution error with 90% containment probability.  This results in an operator bias uncertainty 

of 

 

  

 1

0.5 0.01cm
0.0030 cm

1 0.90 / 2
opu


 
   

. 

 

The same person measured cylinder length and diameter, so 0.0030 cm.Lop Dopu u   

 

Note:  Containment limits for the operator bias are not necessarily based on 

resolution error.  Any appropriate knowledge about operator bias can be used to 

develop containment limits and confidence levels. 

 

6.5.5 Environmental Factors Uncertainty 

We are interested in determining the uncertainty in the length and diameter measurements 

resulting from temperature effects.  Therefore, we must consider the thermal expansion of the 

cylinder and the micrometer, as well as the uncertainty in the environmental temperature 

measurement and the uncertainty in the expansion coefficients.48 

 

The effect of temperature deviation from 20 C on the measured cylinder length is 

 

 L  = L0  (c –  m)  T     (6-14) 

where  

 c = cylinder expansion coefficient  =  5.3  10-6/C 

 m = micrometer expansion coefficient  =  1.2  10-6/C 

 T = ambient temperature – reference temperature  =  24 C – 20 C  =  4 C 

 L0 = nominal cylinder length  =  0.65 cm. 

 

                                                 
48 This analysis is similar to the environmental factors error model developed in Chapter 5, Section 5.4.5. 



 

68 

Similarly, the effect of temperature deviation from 20 C on the measured cylinder diameter is 

 

 D  = D0  (c –  m)  T     (6-15) 

 

where D0  =  nominal cylinder diameter  =  1.40 cm. 

 

The length change error is expressed as 

 

 1 2 3c mL L L L Tc c c         (6-16) 

where 

 

1 0L
c

L
c L T




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

,  2 0L
m

L
c L T


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   


  and   3 0L c m

L
c L

T
 


  


. 

 

The diameter change error is expressed as 

 

 1 2 3c mD D D D Tc c c         (6-17) 

where 

 

1 0D
c

D
c D T




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

,  2 0D
m

D
c D T


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   


  and   3 0D c m

D
c D

T
 


  


. 

 

Applying the variance operator to equation (6-16) we have 
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 (6-18) 

 

From Axiom 2, the uncertainty in the length change error can be expressed as 
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. (6-19) 

 

No correlations should exist between the expansion coefficient errors, 
c

  and 
m

 , or between 

the temperature error, T , and the expansion coefficient errors.  Therefore,  

 

, 0
c m    ,  , 0

Tc
 


 ,  , 0

Tm
 


  

 

and the uncertainty in the length change error can be expressed as 
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 3
2 2 2 2 2 2
1 2

Tc m
LL L Lu c u c u c u

       . (6-20) 

 

Similarly, the uncertainty in the diameter change error can be expressed as 

 

 3
2 2 2 2 2 2

1 2
Tc m

DD D Du c u c u c u
       . (6-21) 

 

The appropriate probability distribution for the temperature error and expansion coefficient 

errors is the normal distribution.  Therefore, the associated uncertainties can be estimated from 

the containment limits, containment probability and the inverse normal distribution function.  In 

this analysis, we will use a 95% containment probability for all three error sources. 

 

The uncertainty in the temperature measurement error is expressed in terms of  2.5 C 

containment limits and 95% containment probability. 

 

 1

2.5 C 2.5 C
1.276 C

1.9600(1 0.95) / 2
T

u 

 
   
 

 

 

Note: In this example, only the error resulting from the temperature measuring device 

is considered.  However, other error sources resulting from variation in the room 

temperature and in the cylinder and micrometer temperatures during the measurement 

process may also need to be considered. 

 

The uncertainty in the cylinder expansion coefficient is estimated from  0.5  10-6/C 

containment limits and 95% containment probability. 
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The uncertainty in the micrometer expansion coefficient is estimated from  0.2  10-6/C 

containment limits and 95% containment probability. 
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The sensitivity coefficients for equation (6-20) are  

 

 cL1  =  0.65 cm   4 C  =  2.6 cm-C  

 cL2  =  – 0.65 cm  4 C  =  – 2.6 cm-C 

 cL3  =   0.65 cm  (5.3 – 1.2)  10-6/C  =  2.67  10-6 cm/C 

 

and the uncertainty in the cylinder length change error is computed to be 
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           
2 2 22 2 26 6 6

11 6

2.6 0.255 10 2.6 0.102 10 2.67 10 1.276 cm

= 1.21 10 cm 3.48 10 cm.

Lu   


 

         

  

 

 

The uncertainty in the cylinder length due to environmental factors error is  

 
-63.48 10  cmLenv Lu u   . 

 

The sensitivity coefficients for equation (6-21) are  

 

 cD1  =  1.40 cm  4 C  =  5.6 cm-C  

 cD2  =  –1.40 cm  4 C  =  – 5.6 cm-C 

 cD3  =   1.40 cm  (5.3 – 1.2)  10-6/C  =  5.74  10-6 cm/C 

 

and the uncertainty in the cylinder diameter change error is computed to be 

 

           
2 2 22 2 26 6 6

11

6

5.6 0.255 10 5.6 0.102 10 5.74 10 1.276 cm

= 5.60 10 cm

7.48 10 cm.

Du   






         



 

 

 

The uncertainty in the cylinder diameter due to environmental factors error is 

 
-67.48 10  cmDenv Du u   . 

 

6.6 Compute Uncertainty Components 

Applying the variance operator to equation (6-12), the uncertainty in the average cylinder length 

measurement can be expressed as 

 

 2 2 2 2 2
Lbias Lres Lop LenvL Lranu u u u u u     . (6-22) 

 

Similarly, applying the variance operator to equation (6-13) gives the following expression for 

the uncertainty in the average cylinder diameter measurement 

 

 2 2 2 2 2
Dbias Dres Dop DenvD Dranu u u u u u     . (6-23)  

 

Note:  There are no terms correlating process uncertainties within each 

component expression because the length measurement process errors are 

independent of one another, as are the diameter measurement process errors.   

 

The uncertainty in the average length measurement is computed to be 
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The uncertainty in the average diameter measurement is computed to be 

 

         
22 2 2 2 6

2

0.0045 cm 0.0042 cm 0.0029 cm 0.0030 cm 7.48 10 cm
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Du      
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The degrees of freedom for the component uncertainties are computed using the Welch-

Satterthwaite formula  
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 (6-24) 

and 

 

4

444 4 4

D
D

DopDbias Dres DenvDran

Dbias Dres Dop DenvDran

u

uuu u u


    



   

. (6-25) 

 

The degrees of freedom for all of the process uncertainties were assumed to be infinite, except 

for the repeatability uncertainties, Lranu  and Dranu , which have degrees of freedom equal to 6 

(i.e., sample size minus one).  Therefore, the degrees of freedom for the component uncertainties 

are computed to be 

 
44

4

0.0068 cm
6 181.4

0.0029 cm

L
L Lran

Lran

u

u
 

 
     

 
 

 
44

4

0.0074 cm
6 57.8

0.0042 cm

D
D Dran

Dran

u

u
 

 
     

 
 

 

where the degrees of freedom are reported to the nearest whole numbers, 181L   and 58D  . 

 

6.7 Account for Cross-Correlations 

Before we combine the length and diameter measurement uncertainties, we must consider if 

there are any cross-correlations between the length and diameter measurement process errors.  

First, we need to write an equation that expresses the correlation coefficient, LD, for the 

component errors, L and D, in terms of the cross-correlation coefficients for the process errors 
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    (6-26) 

 

where Li,Dj is the cross-correlation coefficient between the Li and Dj process errors for the 

length and diameter components, respectively.  

 

 

The cross-correlation coefficients can range from minus one to plus one.  A positive coefficient 

applies when the error sources are directly related.  A negative coefficient is used when the error 

sources are inversely related.  

 

Second, let us review what we know about the cylinder measurement process. 

 

1. Both length and diameter are measured using the same device (i.e., a micrometer). 

2. All measurements are made by the same person (operator). 

3. All measurements were made in the same measuring environment. 

 

Given this knowledge, we can assert that the following process errors are cross-correlated 

between the length and diameter components: 

 

 Measurement Bias - Lbias and Dbias 

 Operator Bias - Lop and Dop 

 Environmental Factors - Lenv and Denv 

 

Therefore, equation (6-26) becomes 

 

  , , ,

1
LD Lbias Dbias Lbias Dbias Lop Dop Lop Dop Lenv Denv Lenv Denv

L D

u u u u u u
u u

      . (6-27) 

 

6.7.1 Measurement Biases   

Since the same device is used to measure the cylinder length and diameter, the micrometer bias 

for these measurements is the same.  In this instance, the cross-correlation coefficient Lbias,Dbias 

is equal to 1.0. 

 

Note:  The micrometer bias may vary slightly over its range.  However, in this 

analysis we assume that this variation is negligible.  

 

6.7.2 Operator Biases   

Although the same operator makes both length and diameter measurements, human 

inconsistency prevents us from assigning a correlation coefficient equal to 1.0.  However, we 

also know that the correlation coefficient should not be equal to zero either.  Given that this is all 

we can say from heuristic considerations, we will set the cross-correlation coefficient between 

length and diameter operator biases Lop,Dop equal to 0.5.  
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6.7.3 Environmental Factors Errors   

As shown in Section 6.5.5, the length and diameter change errors, L and D, are functions of 

the expansion coefficient and temperature change errors.  Consequently, an increase or decrease 

in L will result in a proportionate increase or decrease in D.  Therefore, the cross-correlation 

coefficient Lenv,Denv, is equal to 1.0. 

 

The correlation coefficient LD can now be expressed as 

 

  
1

0.5LD Lbias Dbias Lop Dop Lenv Denv
L D

u u u u u u
u u

    . (6-28) 

 

6.8 Combine Uncertainty Components 

The equation for the cylinder volume uncertainty is obtained by substituting equation (6-28) into 

equation (6-11) 

 

  2 2 2 2 2 0.5Lbias Dbias Lop Dop Lenv DenvV L L D D L Du c u c u c c u u u u u u      (6-29) 

 

where the sensitivity coefficients are 
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The cylinder volume uncertainty is computed to be 
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The degrees of freedom for the cylinder volume uncertainty are estimated using the Welch-

Satterthwaite formula  
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 (6-30) 

 

where *Vu  is the total uncertainty computed without cross-correlations between the uncertainty 
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components Lu  and Du .49 
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The degrees of freedom for the cylinder volume uncertainty are computed to be 
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and are reported as the nearest whole number, 166V  .  

 

6.9 Report Analysis Results 

We have accounted for all uncertainties considered to be relevant to the cylinder volume 

measurement process and can now evaluate the results of our analysis.  In this case, we are 

interested in the uncertainty in the cylinder volume computed from the average length and 

diameter measurements corrected to 20 C.  

 

6.9.1 Cylinder Volume and Combined Uncertainty 

The cylinder volume is computed using the average cylinder length and diameter corrected to  

20 C.   The average cylinder length and diameter at 24 C were computed to be 0.687 cm and 

1.433 cm, respectively.  Equations (6-14) and (6-15) can be used to estimate the effect of 

temperature deviation from 20 C on the measured cylinder length and diameter.      

  

 L  = 0.65 cm  (5.3 –  1.2) 10-6/C  4 C 

  = 1.07  10-5 cm 

 

 D  = 1.40 cm  (5.3 –  1.2) 10-6/C  4 C 

  = 2.30  10-5 cm 

 

Both the length and diameter expansion are considered to be insignificant for this analysis. 

Therefore, the cylinder volume can be computed using the uncorrected average length and 

diameter. 

 

 

2

2

D
V L

 
  

 
 (6-31) 

 

where L  = 0.687 cm and D = 1.433 cm.   The cylinder volume is computed to be  

  

                                                 
49 While the Welch-Satterthwaite formula is applicable for statistically independent, normally distributed error sources it can 

usually be thought of as a fair approximation in cases where error sources are not statistically independent. 
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 V  = 3.14159  0.687  (1.433/2)2  =  1.108 cm3 

 

with an uncertainty of Vu = 0.019 cm3 and 166 degrees of freedom.   

 

6.9.2  Measurement Process Errors and Uncertainties 

The measurement process errors, corresponding distributions, uncertainties and degrees of 

freedom are summarized in Table 6-2.   

 

Table 6-2.  Measurement Process Uncertainties for Cylinder Volume Measurement 

 

Error 

Source 

 

Error  

Limits 

(cm) 

 

Error 

Containment 

Probability 

 

 

Error 

Distribution 

Estimated 

Standard 

Uncertainty 

(cm) 

 

 

Estimate 

Type 

 

Deg. 

of  

Freed. 

 

Sensitivity 

Coeff. 

(cm2) 

 

Component 

Uncertainty 

(cm3) 

Lbias  0.01 97.5% Normal 0.0045 B  1.613 0.0073 

Dbias  0.01 97.5% Normal 0.0045 B  1.547 0.0070 

Lran     0.0029 A 6 1.613 0.0047 

Dran     0.0042 A 6 1.547 0.0065 

Lres  0.01 100% Uniform 0.0029 B  1.613 0.0047 

Dres  0.01 100% Uniform 0.0029 B  1.547 0.0045 

Lop  0.01 90% Normal 0.0030 B  1.613 0.0048 

Dop  0.01 90% Normal 0.0030 B  1.547 0.0046 

Lenv   Normal 3.48  10-6 B  1.613 5.61  10-6 

Denv   Normal 7.48  10-6 B  1.547 1.16  10-5 

 

The component uncertainty is the product of the standard uncertainty and the sensitivity 

coefficient.  The relative contributions of the component uncertainties to the overall cylinder 

volume uncertainty are shown in Figure 6-1.  Recall from equation (6-29), the uncertainty in the 

cylinder volume accounts for cross-correlations between Lbias and Dbias, Lop and Dop, and Lenv 

and Denv.  Consequently, measurement bias uncertainty (i.e., micrometer bias uncertainty) for 

length and diameter are the largest contributors to the uncertainty in cylinder volume, followed 

by operator bias and diameter repeatability. 
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Figure 6-1.  Pareto Chart for Cylinder Volume Measurement 

 

6.9.3  Confidence Limits 

The combined uncertainty and degrees of freedom can be used to compute confidence limits that 

are expected to contain the true cylinder volume with some specified confidence level or 

probability, p.  The confidence limits are expressed as  

 

 / 2, VV t u   (6-32) 

 

where the multiplier, t/2, is the t-statistic and  = 1- p.  

 

For this analysis, let us assume that we want 99% confidence limits (i.e., p = 0.99).  The 

corresponding t-statistic is t0.005,166  2.6 and the confidence limits are computed to be 

 
3 31.108 cm 2.6 0.019 cm   or 

3 31.108 cm 0.049 cm . 

 

6.9.3.1  Single Cylinder Volume Measurement 

To compute the confidence limits for the cylinder volume determined from a single pair of 

length and diameter measurements, ,L ranu  and ,D ranu  must be replaced with uL,ran and uD,ran in 

equations (6-22) and (6-23), respectively. 

 

The uncertainty components, uL and uD are then computed to be 
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The associated degrees of freedom for these uncertainty components are similarly computed by 

substituting ,L ranu  and ,D ranu  with uL,ran and uD,ran, respectively. 
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The degrees of are reported to the nearest whole numbers, 17L   and 10D  . 

 

The cylinder volume uncertainty is then computed by substituting uL and uD for Lu  and Du  in 

equation (6-29).   
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The corresponding degrees of freedom are computed using the Welch Satterthwaite formula 

 

4
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4 4 4 4
V

L L D D
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where *Vu  is the cylinder volume uncertainty computed without cross-correlations. 

 

   

2 2 2 2
*

2 2
2 2

3

1.613 cm 0.0098 cm 1.547 cm 0.0126 cm

0.025 cm .
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The degrees of freedom for the cylinder volume uncertainty are computed to be 
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 
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4 4
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1.613 cm 0.0098 cm 1.547 cm 0.0126 cm
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 


. 

 

and are reported as the nearest whole number, 22V  .  

 

The confidence limits, relative to a single cylinder volume measurement are 

 

 / 2, VV t u  . (6-33) 

 

For a 99% confidence level, t0.005,22  2.82 and the confidence limits are computed to be  

 
3 31.108 cm 2.82 0.027 cm   or 

3 31.108 cm 0.076 cm . 
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CHAPTER 7:  MEASUREMENT SYSTEMS 
 

7.0 General 

This chapter discusses the approach used to estimate the uncertainty of a quantity (or subject 

parameter) that is measured with a system comprised of component modules arranged in series.  

The analysis process traces system uncertainty module by module from system input to system 

output.   

 

 

Figure 7-1.  Block Diagram for Example System  

 

System uncertainty analysis follows a structured procedure.  This is necessary because the output 

from any given module of a system may comprise the input to another module or modules.  

Since each module's output carries with it an element of uncertainty, this means that the same 

uncertainty may be present at the input of some other module.   

 

7.1   System Analysis Procedure 

In analyzing linear measurement systems, we develop output equations for each module.  From 

these equations, we identify sources of error for each module.  We then estimate the uncertainty 

in each error source and compute the combined uncertainty in the output of each module.  In 

doing this, we make certain that the uncertainty in the output of each module is included in the 

input to the succeeding module in the system.   

 

In this respect, the system analysis results are computed somewhat differently than those 

previously discussed for direct measurements and multivariate measurements.  The general 

system analysis procedure consists of the following steps: 

 

1. Develop the System Model 

2. Define the System Input  

3. Define the System Modules 

4. Identify Module Error Sources 

5. Develop Module Error Models 

6. Develop Module Uncertainty Models   

7. Estimate Module Uncertainties 
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8. Compute System Output Uncertainty 

9. Report Analysis Results 

 

The processes for developing a system model and the corresponding module output equations are 

presented.  Processes for identifying measurement process errors, estimating their uncertainties 

and accounting for correlations are presented using a load cell measurement system for 

illustration.   

 

7.2 Develop the System Model 

The first step in the system analysis procedure is to develop a model that describes the modules 

involved in processing the measurement of interest (i.e., subject parameter).  The model should 

include a diagram depicting the modules of the system and their inputs and outputs and identify 

the hardware and software used.   

 

The system diagram can be a useful guide for developing the equations that describe the module 

outputs in terms of inputs and identify the parameters that characterize these processes.  It may 

also be beneficial to develop a functional model that relates component errors to the overall 

system output error. 

 

7.2.1   Load Cell Measurement System 

In this example, a load cell is calibrated using a weight standard, as illustrated in Figure 7-2.   

The calibration weight is extended from the load cell via a monofilament line.  The DC voltage 

output from the amplifier module is measured with a digital multimeter (DMM).  Three repeat 

measurements of DC voltage are obtained by adding and removing the calibration weight.   

 

 

Figure 7-2.  Load Cell Calibration Setup 

 

The purpose of this analysis is to estimate and report the total uncertainty in the average DC 

voltage obtained via the load cell calibration process.  For the load cell system analysis, we need 

to define the mathematical relationship between the quantity being investigated and its 
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component variables.  In this case, measurement is made through a linear sequence of stages as 

shown in Figure 7-3.  

 

 

Figure 7-3.  Block Diagram of Load Cell Measurement System 

 

The output, Y, from any given module of the system may comprise the input of another module 

or modules.  Since each module's output carries with it an element of uncertainty, then this 

uncertainty may be present at the input of a subsequent module. 

 

7.3   Define the System Input 

The second step in the system analysis procedure is to define the quantity or parameter value that 

is sought through measurement.50  The nominal (or expected) input value, measurement area and 

units are specified during this step. 

 

7.3.1   Load Cell Measurement System 

As previously indicated, a weight standard is used to calibrate the load cell measurement system.  

The nominal value of the calibration weight is stated to be 3 lbf.  In this case, the nominal value 

for the system input is 3, the input measurement area is force and the units are lbf.  

 

7.4 Define the System Modules 

Once a sufficiently detailed block diagram has been established, the equations that relate the 

inputs and outputs for each module can be developed.  The basic approach is to clearly describe 

the physical processes that transform the system input along its path from module to module. 

 

7.4.1 Load Cell Module (M1)   

The first module in the load cell measurement system consists of an MDB-5-T load cell 

manufactured by Transducer Techniques, Inc.  This load cell is a passive sensor that requires an 

external voltage source and has a rated output of 2 mV/V nominal for loads up to 5 lbf.  

Therefore, the nominal sensitivity of the load cell is 0.4 mV/V/lbf.    

 

The basic transfer function for the load cell module is given in equation (7-1).  

 

 LCOut = W  S  Vex (7-1) 

where 

 

 LCOut = Load cell output, mV 

 W = Applied load or weight, lbf 

 S = Load cell sensitivity, mV/V/lbf 

 Vex = Excitation voltage, V 

                                                 
50 i.e., the input stimulus to the measurement system.  

Calibration

Weight

X

Load Cell Amplifier/Signal 

Conditioner

Digital 
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M1 M2 M3
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7.4.2 Amplifier Module (M2)   

The second system module is a TMO-2 Amplifier, manufactured by Transducer Techniques Inc.  

This module amplifies the mV output from the load cell module to V.  The nominal amplifier 

gain is the ratio of the maximum amplifier output to the maximum load cell output.  The basic 

transfer function for this module is given in equation (7-2). 

 

 AmpOut = LCOut  G  (7-2) 

where 

 AmpOut = Amplifier Output, V  

 G  = Amplifier Gain, V/mV 

 

7.4.3 Digital Multimeter Module (M3)   

An 8602A digital multimeter, manufactured by Fluke, converts the analog output signal from the 

amplifier module to a digital signal and displays it on a readout device.  The basic transfer 

function for this module is expressed in equation (7-3). 

 

 DMMOut = AmpOut (7-3) 

where 

 DMMOut = Digital multimeter output, V  

 

7.5    Identify Module Error Sources 

The next analysis step is to evaluate module functions or parameters to identify errors that may 

contribute to the total module output error.  

 

In the analysis of the load cell measurement system, error in the mass of the calibration weight, 

errors intrinsic to the measurement equipment used, and other process errors are considered.  A 

list of applicable error sources is given below. 
 

 Bias in the value of the calibration weight 

 Errors associated with the MDB-5-T Load Cell  

 Errors associated with the Model TMO-2 Amplifier 

 Errors associated with the 8062A Digital Multimeter 

 Error associated with the repeat measurements taken 

 

7.5.1   Load Cell Module (M1)  

For this module, the following error sources must be considered: 

 

 Bias in the value of the calibration weight 

 Excitation voltage error 

 Load cell error 

 

Manufacturer's published specifications for the load cell51 are listed in Table 7-1.  The following 

sources of load cell error will be included: 

 

                                                 
51 Specifications obtained from www.ttloadcells.com/mdb-load-cell.cfm 
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 Nonlinearity 

 Hysteresis 

 Noise 

 Zero balance 

 Temperature effect on output 

 Temperature effect on zero 

 

Table 7-1.  MDB-5-T Load Cell Specifications 

Specification Value Units 

Maximum Applied Load 5 lbf 

Rated Output (R.O.) 2 mV/V 

Nonlinearity 0.05% of R.O. mV/V 

Hysteresis 0.05% of R.O. mV/V 

Noise (Nonrepeatability) 0.05% of R.O. mV/V 

Zero Balance 1.0% of R.O. mV/V 

Compensated Temp. Range 60 to 160 F 

Temperature Effect on Output 0.005% of Load/F lbf/F 

Temperature Effect on Zero 0.005% of R.O./F mV/V/F 

Recommended Excitation Voltage 10 VDC 

 

When developing an equation for the load cell module, the impact of the error sources on the 

output must be considered.  Each of the error sources listed above are discussed briefly to 

determine how they should be accounted for in the load cell output equation. 

 

7.5.1.1 Calibration Weight 

The 3 lbf calibration weight has specified error limits of  0.003 lbf.  In this analysis, these limits 

are interpreted to represent 99 % confidence limits.  The associated error distribution is 

characterized by the normal distribution. 

 

7.5.1.2 Excitation Voltage 

Since the MDB-5-T load cell is a passive sensor, it requires an external power supply.  The 

TMO-2 Amplifier provides a regulated 8 VDC excitation power supply with  0.25 V error 

limits.  The excitation voltage error limits are interpreted to be 95% confidence limits for a 

normally distributed error. 

 

7.5.1.3 Nonlinearity.   

Nonlinearity is a measure of the deviation of the actual input-to-output performance of the device 

from an ideal linear relationship.  Nonlinearity error is fixed at any given input, but varies with 

magnitude and sign over a range of inputs.  Therefore, it is considered to be a random error that 

is normally distributed.  The manufacturer specification limits of  0.05% of the rated output are 

interpreted to be a 95% confidence limits. 

 

7.5.1.4 Hysteresis   

Hysteresis indicates that the output of the device is dependent upon the direction and magnitude 

by which the input is changed.  At any input value, hysteresis can be expressed as the difference 

between the ascending and descending outputs.  Hysteresis error is fixed at any given input, but 
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varies with magnitude and sign over a range of inputs.  Therefore, it is considered to be a random 

error that is normally distributed.  The manufacturer specification limits of  0.05% of the rated 

output are interpreted to be a 95% confidence limits. 

 

7.5.1.5 Noise   

Nonrepeatability or random error intrinsic to the device, which causes the output to vary from 

observation to observation for a constant input is usually specified as noise.  This error source 

varies with magnitude and sign over a range of inputs and is normally distributed.  The 

manufacturer specification limits of  0.05% of the rated output are interpreted to be 95% 

confidence limits. 

 

7.5.1.6 Zero Balance   

Zero balance refers to the zero offset that occurs if the device exhibits a non-zero output for a 

zero input.  Although zero offset error can be reduced by adjustment, there is no way to 

completely eliminate it because we do not know the true value of the offset.  The manufacturer 

specification limits of  1% of the rated output are interpreted to be 95% confidence limits for a 

normally distributed error. 

 

7.5.1.7 Temperature Effects   

The load cell is part of a tension testing machine, which heats up during use.  The load cell 

temperature is monitored and recorded during the testing process and observed to increase from 

75 F to 85 F.  The load cell is subjected to the same temperature change during calibration. 

 

Temperature can affect both the offset and sensitivity of the load cell.  To establish these effects, 

the device is typically tested at several temperatures within its operating range and the effects on 

zero and sensitivity or output are observed.  

 

Although the load cell is used within its compensated temperature range, the manufacturer 

acknowledges that some compensation error exists, hence the stated specifications for 

Temperature Effect on Output and Temperature Effect on Zero.  

 

The temperature effect on output of 0.005% load/F specified by the manufacturer is equivalent 

to 0.00015 lbf/F for an applied load of 3 lbf.  The temperature effect on zero  and the 

temperature effect on output specifications are interpreted to be a 95% confidence limits for 

normally distributed errors.   

 

A 10 F temperature change is used in this analysis to account for temperature compensation 

error.  The temperature measurement error limits are  2 F with an associated 99% confidence 

level.  The temperature error is assumed to be normally distributed. 

 

7.5.2   Amplifier Module (M2) 

For this module, the following error sources must be considered: 

 

 Load cell output error 

 Amplifier error 
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The manufacturer's published specifications for the amplifier52 are listed in Table 7-2.  For a 

recommended applied excitation voltage of 10 VDC, the MDB-5-T load cell has a maximum 

rated output of 20 mV.  Therefore, the TMO-2 amplifier has a nominal gain of 10V/20 mV or  

0.5 V/mV. 

 

Table 7-2.  TMO-2 Amplifier Specifications 

Specification Value Units 

Maximum Output Voltage 10 V 

Gain (nominal) 0.5 V/mV 

Gain Accuracy 0.05% of Full Scale mV 

Gain Stability 0.01% mV 

Nonlinearity 0.01%  mV 

Noise and Ripple < 3 mV 

Balance Stability 0.2% mV 

Temperature Coefficient 0.02% of F.S./C mV/C 

 

Given the above specifications, the following sources of amplifier error are applicable to this 

analysis: 

 

 Gain accuracy 

 Gain stability (or Instability) 

 Nonlinearity 

 Noise 

 Balance stability 

 Temperature coefficient 

 

7.5.2.1 Gain Accuracy   

Gain is the ratio of the amplifier output signal voltage to the input signal voltage.  In this case, 

the TMO-2 amplifier has a nominal gain of 10V/20 mV or 0.5 V/mV.  The manufacturer 

specified accuracy limits of  0.05% of full scale are interpreted to be 95% confidence limits for 

a normally distributed error.    

 

7.5.2.2 Gain Stability   

If the amplifier voltage gain is represented by GV, its input resistance by R and its feedback 

resistance by Rf, then oscillations are possible when 

 

V

f

RG

R R



. 

 

These oscillations appear as an instability in the amplifier gain.  The manufacturer specification 

of 0.01% is interpreted to be  0.01% of full scale.  These limits are assumed to represent 95% 

confidence limits for a normally distributed error. 

 

                                                 
52 Specifications obtained from www.ttloadcells.com/TMO-2.cfm 
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7.5.2.3 Nonlinearity   

As with the load cell module, actual amplifier response may depart from the ideal or assumed 

output versus input curve.  Nonlinearity errors are point-by-point differences in actual versus 

expected response over the range of input signal levels.  The manufacturer specification of 

0.01% is interpreted to be  0.01% of full scale and representative of 95% confidence limits for a 

normally distributed errors. 

 

7.5.2.4 Noise   

Noise generated within the amplifier that enters the signal path causes errors in the amplifier 

output.  Since noise is directly related to gain, manufacturers usually specify noise error in 

absolute units of Volts RMS or Volts peak-to-peak.  The manufacturer specification of 3 mV 

peak-to-peak is estimated to be  1.5 mV limits that are equivalent to 99% confidence limits for 

a normally distributed error. 

 

7.5.2.5 Balance Stability   

Balance stability, or instability, refers to a non-zero amplifier output exhibited for a zero input.  

Although balance instability can be reduced by adjustment, there is no way to completely 

eliminate it because we do not know the true value of the zero offset. The manufacturer 

specification of  0.2% is interpreted to be  0.2% of full scale.  These limits are also interpreted 

to be 95% confidence limits for a normally distributed error. 

 

7.5.2.6 Temperature Coefficient   

Both the balance (or zero) and gain are affected by temperature.  Manufacturers generally state 

this as a temperature coefficient (or Tempco) in terms of percent change or full scale per degree.  

The manufacturer specification limits of  0.02% of full scale/C are interpreted to be 95% 

confidence limits for a normally distributed error.   

 

To quantify the effect of temperature, however, we must establish the expected temperature 

change and use this with the temperature coefficient to compute expected variations.  As with the 

load cell module, the impact of temperature correction error is estimated using a temperature 

range of 5.6 C (10 F) with measurement error limits of  1.1 C with an associated confidence 

level of 99% for a normally distributed error.  

 

7.5.3  Digital Multimeter Module (M3) 

Manufacturer's published specifications for the DC voltage function of the digital multimeter53 

are listed in Table 7-3.  In this module, key error sources include: 

 

 Amplifier output error 

 DC voltmeter accuracy  

 DC voltmeter digital resolution 

 Repeat measurements error 

  

                                                 
53 Specifications from 8062A Instruction Manual downloaded from www.fluke.com 
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Table 7-3.  8062A  DC Voltage Specifications 

Specification Value Units 

200 mV Range Resolution 0.01 mV 

200 mV Range Accuracy 0.05% of Reading + 2 digits  mV 

2 V Range Resolution 0.1  mV 

2 V Range Accuracy 0.05% of Reading + 2 digits mV 

20 V Range Resolution 1 mV 

20 V Range Accuracy 0.07% of Reading + 2 digits mV 

 

7.5.3.1 DC Voltage Accuracy.   

The overall accuracy of the DC Voltage reading for a 20 V range is specified as  (0.07% of 

reading + 2 digits).  These specification limits are interpreted to be 95% confidence limits for a 

normally distributed error.  

 

7.5.3.2 Digital Resolution.   

The digital resolution for the 20 V DC range is specified as 1 mV.  Since this is a digital display, 

the resolution error is uniformly distributed.  Therefore, the resolution error limits  0.5 mV are 

interpreted to be the minimum 100% containment or bounding limits. 

 

7.5.3.3 Repeatability.   

Random error resulting from repeat measurements can result from various physical phenomena 

such as temperature variation or the act of removing and re-suspending the calibration weight 

multiple times.  Repeatability uncertainty will be estimated using the data listed in Table 7-4. 

 

Table 7-4.  DC Voltage Readings 

Repeat 

Measurement 

Measured  

DC Voltage 

(V) 

Offset from  

 Nominal   

DC Voltage 

(V) 

1 4.856 0.056 

2 4.861 0.061 

3 4.860 0.060 

 

7.6    Develop Module Error Models 

The next analysis step is to develop an error model for each module.  In most instances, the 

module output is a function of several variables.  Therefore, the error model must be developed 

using a multivariate analysis approach. 

 

As discussed in Chapter 6, the error model for a multivariate parameter q = f(x,y,z) is expressed 

as 

q x x y y z zc c c      , 

 

where cx, cy, and cz are sensitivity coefficients that determine the relative contribution of the 

errors in x, y and z to the total error in q.  The sensitivity coefficients are defined as 
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For the load cell measurement system, equations (7-1) through (7-3) provide the basis for the 

development of the module error models. 

  

7.6.1 Load Cell Module (M1)   

The load cell output equation (7-1) must be modified before the associated error model can be 

developed.  It is a good practice to first assign names to the relevant module error sources and 

other parameters.  The load cell error source and parameter names, descriptions, nominal values, 

error limits and confidence levels are listed in Table 7-5. 

 

Table 7-5.  Parameters used in Modified Load Cell Module Equation 

Parameter 

Name 
Description 

Nominal or 

Mean Value 

Error 

Limits 

Percent 

Confid. 

WC  Calibration Weight or Load 3 lbf  0.003 lbf 99 

S  Load Cell Sensitivity 0.4 mV/V/lbf   

NL  Nonlinearity 0 mV/V  0.001 mV/V 95 

Hys  Hysteresis 0 mV/V  0.001 mV/V 95 

NS  Nonrepeatability 0 mV/V  0.001 mV/V 95 

ZO  Zero Balance 0 mV/V  0.02 mV/V 95 

TRF  Temperature Range 10 F  2.0 F 99 

TEOut  Temperature Effect on Output 0 lbf/F  1.5 e-4 lbf/F 95 

TEZero  Temperature Effect on Zero 0 mV/V /F  0.0001 mV/V /F 95 

Vex Applied Excitation Voltage 8 V  0.25 V 95 

 

Next, given what is known about the load cell error sources listed in Table 7-5, they must be 

appropriately incorporated into equation (7-1).  The modified module output equation is given in 

equation (7-4). 

 

 LCout = [(WC + TEoutTRF)S + NL + Hys + NS + ZO +  TEZeroTRF]Vex (7-4) 

 

From equation (7-4), the error model for the load cell module is given in equation (7-5).  
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   (7-5) 

 

The partial derivative equations used to compute the sensitivity coefficients are listed below.  
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7.6.2 Amplifier Module (M2)  

The amplifier output equation (7-2) must be modified before the associated error model can be 

developed.  The amplifier error source and parameter names, descriptions, nominal values, error 

limits and confidence levels are listed in Table 7-6. 
 

Table 7-6.  Parameters used in Modified Amplifier Module Equation 

Parameter 

Name 
Description 

Nominal or 

Mean Value 

Error  

Limits 

Percent 

Confidence 

LCOut Amplifier Input    

G Gain 0.5 V/mV   

GAcc Gain Accuracy 0 V  5 mV 95 

GS Gain Stability 0 V  1 mV 95 

GNL Nonlinearity 0 V  1 mV 95 

GNS Noise 0 V  1.5 mV 99 

BSt Balance Stability 0 V  20 mV 95 

TC Temperature Coefficient 0 V/C  2 mV/C 95 

TRC Temperature Range 5.6 C  1.1 C 99 

 

Given what is known about the amplifier error sources listed in Table 7-6, they must be 

adequately incorporated into the amplifier module output equation (7-2).  The modified module 

output equation is given in equation (7-6). 

 

 AmpOut  = LCOut  G + GAcc + GS + GNL + GNS + BSt + TC  TRC (7-6) 

 

From equation (7-6), the error model for the amplifier module is given in equation (7-7).  
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The partial derivative equations used to compute the sensitivity coefficients are listed below.  
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7.6.3 Digital Multimeter Module (M3)  

The digital multimeter output equation must also be modified before the associated error model 

can be developed.  The modified multimeter output equation given in equation (7-8) accounts for 

the relevant module parameters and error limits listed in Table 7-7.  The repeatability parameter, 

Vran, is estimated from the three repeat voltages listed in Table 7-4.  

 

 DMMOut  =  AmpOut + DMMAcc + DMMres + Vran (7-8) 

 

Table 7-7.  Parameters used in Modified Multimeter Module Equation 

Parameter 

Name 
Description 

Nominal or 

Mean Value 

Error  

Limits 

Percent 

Confidence 

AmpOut DMM Input 4.80 V   

DMMAcc DC Voltmeter Accuracy 0 V  (0.07% Read + 2 mV) 95 

DMMres 
DC Voltmeter Digital 

Resolution 
0 V  0.5 mV 100 

 

The corresponding error model for the multimeter module is given in equation (7-9).  
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The partial derivative equations used to compute the sensitivity coefficients are listed below.  
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7.7    Develop Module Uncertainty Models 

The next step in the system analysis procedure is to develop an uncertainty model for each 

system module, accounting for correlations between error sources.  

 

As discussed in Chapter 6, the uncertainty in a multivariate parameter q can be determined by 

applying the variance addition operator 
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where xy, xz and yz are the correlation coefficients for the errors in x, y and z. 

 

7.7.1  Load Cell Module (M1)  

The uncertainty model for the load cell module output can be determined by applying the 

variance operator to equation (7-5). 
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There are no correlations between error sources for the load cell module.  Therefore, the 

uncertainty in the load cell output can be expressed as 
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7.7.2   Amplifier Module (M2) 

The uncertainty model for the amplifier module output is developed by applying the variance 

operator to the corresponding error model given in equation (7-7). 
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There are no correlations between error sources.  Therefore, the uncertainty model for the 

amplifier module output can be expressed as 
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7.7.3   Digital Multimeter Module (M3) 

The uncertainty model for the multimeter module output is developed by applying the variance 

operator to the corresponding error model given in equation (7-9). 

 

  var var
Out Out Acc Acc

Out Out

res res ran ran

Amp Amp

DMM DMM

DMM DMM

DMM DMM V V

c c
u

c c

 


 

 
   

  
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 (7-14) 

 

There are no correlations between error sources and the correlation coefficients all have values of 

unity.  Therefore, the uncertainty model for the multimeter module output can be expressed as 
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2 2 2 2

Out Out
DMM Amp DMM DMM VAcc res ran

u u u u u   
 (7-15) 

 

7.8   Estimate Module Uncertainties 

The next step in the system analysis procedure is to estimate uncertainties in module parameters 

and to use these estimates to compute the combined uncertainty and associated degrees of 

freedom for each module output.  

 

7.8.1   Load Cell Module (M1) 

The load cell output uncertainty is computed from the uncertainty estimates and sensitivity 

coefficients for each module parameter.  

 

As discussed in section 7.5.1, all of the error sources identified for the load cell module are 

assumed to follow a normal distribution.  Therefore, the corresponding uncertainties can be 

estimated from the error limits,  L, confidence level, p, and the inverse normal distribution 

function, (.), as discussed in Chapter 3. 

 

1 1

2

L
u

p


 

  
 

 

 

For example, the bias uncertainty of the calibration weight is estimated to be 

 

f f
f

1

0.003 lb 0.003 lb
0.0012 lb .

1 0.99 2.5758

2

WC
u



  
 

  
 

 

 

Similarly, the uncertainty due to the excitation voltage error is estimated to be 

 

1

0.25 V 0.25 V
0.1276 V.

1 0.95 1.9600

2

Vex
u



  
 

  
 

 

 

The sensitivity coefficients are computed using the parameter nominal or mean values.  
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The estimated uncertainties and sensitivity coefficients for each parameter are listed in Table 7-8. 

 

Table 7-8.   Estimated Uncertainties for Load Cell Module Parameters 

Param. 

Name 

Nominal or 

Mean Value 
 Error 

Limits 

Percent 

Conf. 

Standard 

Uncertainty 

Sensitivity  

Coefficient 

Component 

Uncertainty 

WC 3 lbf  0.003 lbf 99 0.0012 lbf 3.2 mV/lbf 0.0037 mV 

S 0.4 mV/V/lbf    24 lbf V  

NL 0 mV/V  0.001 mV/V 95 0.0005 mV/V 8 V 0.0041 mV 

Hys 0 mV/V  0.001 mV/V 95 0.0005 mV/V 8 V 0.0041 mV 

NS 0 mV/V  0.001 mV/V 95 0.0005 mV/V 8 V 0.0041 mV 

ZO 0 mV/V  0.02 mV/V 95 0.0102 mV/V 8 V 0.0816 mV 

TRF 10 F  2.0 F 99 0.7764 F 0  

TEOut 0 lbf/F  1.5  10-4 lbf/F 95 0.0001 lb/F 32 FmV/lbf 0.0024 mV 

TEZero 0 mV/F  0.0001 mV/V/F 95 0.00005 mV/V/F 80 FV 0.0041 mV 

Vex 8 V  0.25 V 95 0.1276 V 1.2 mV/V 0.1531 mV 

 

The component uncertainties listed in Table 7-8 are the products of the standard uncertainty and 

sensitivity coefficient for each parameter.  From equation (7-1), the nominal load cell output is 

computed to be 

 

LCOut = W S Vex = 3 lbf  0.4 mV/V/lbf  8 V =  9.60 mV. 

 

The load cell output uncertainty is computed by taking the root sum square of the component 

uncertainties. 

 

       

       
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2
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0.0302 mV 0.174 mV

OutLCu
  



   

 
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The Welch-Satterthwaite formula given in equation (7-16) is used to compute the degrees of 

freedom for the load cell output  uncertainty.   
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 
 

 (7-16) 

 

The degrees of freedom for all of the error source uncertainties are assumed infinite.  Therefore, 

the degrees of freedom for the load cell output uncertainty are also infinite. 

 

7.8.2   Amplifier Module (M2) 

The amplifier output uncertainty is computed from the uncertainty estimates and sensitivity 

coefficients for each module parameter.  

 

As discussed in section 7.5.2, all of the error sources identified for the amplifier module are 

assumed to follow a normal distribution.  Therefore, the corresponding uncertainties can be 

estimated from the error limits, confidence level, and the inverse normal distribution function. 

 

For example, the uncertainty due to the gain accuracy is estimated to be 
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2

GAcc
u



  
 

  
 

 

 

The sensitivity coefficients are computed using the parameter nominal or mean values.  
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C
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The estimated uncertainties and sensitivity coefficients for each parameter are listed in Table 7-9. 

 

Table 7-9.  Estimated Uncertainties for Amplifier Module Parameters 

Param. 

Name 

Nominal or 

Mean Value 
 Error 

Limits 

Percent 

Confid. 

Standard 

Uncertainty 

Sensitivity 

Coefficient 

Component 

Uncertainty 

LCOut 9.6 mV   0.1740 mV 0.5 V/mV 0.0869 V 

G 0.5 V/mV    9.6 mV  

GAcc 0 V  5 mV 95 2.551 mV 1 0.0026 V 

GS 0 V  1 mV 95 0.510 mV 1 0.0005 V 
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GNL 0 V  1 mV 95 0.510 mV 1 0.0005 V 

GNS 0 V  1.5 mV 99 0.583 mV 1 0.0006 V 

BSt 0 V  20 mV 95 10.204 mV 1 0.0102 V 

TC 0 V  2 mV/C 95 1.020 mV/C 5.6 C 0.0057 V 

TRC 5.6 C  1.1 C 99 0.427C 0 0 V 

 

From equation (7-2), the nominal amplifier output is computed to be 

 

AmpOut = LCOut  G = 9.60 mV  0.5 V/mV =  4.80 V. 

 

The amplifier output uncertainty is computed by taking the root sum square of the component 

uncertainties. 
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The degrees of freedom for the amplifier output uncertainty are computed using the Welch-

Satterthwaite formula, as shown in equation (7-17).   
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 (7-17) 

 

The degrees of freedom for all of the error source uncertainties are assumed infinite.  Therefore, 

the degrees of freedom for the amplifier output uncertainty are also infinite. 

 

7.8.3   Multimeter Module (M3) 

The multimeter output uncertainty is computed from the uncertainty estimates and sensitivity 

coefficients for each module parameter.  

 

As discussed in section 7.5.3, the DMM accuracy error follows a normal distribution.  Therefore, 

the uncertainty due to the digital multimeter accuracy is estimated to be 
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The DMM resolution error follows a uniform distribution, so the digital multimeter resolution 

uncertainty is estimated to be 

 

0.5 mV 0.5 mV
0.3 mV 0.0003 V.

1.7323
DMMres

u      

 

The repeatability uncertainty is the standard deviation of the repeat measurements listed in Table 

7-4.  The mean voltage offset is  

 

0.056 0.061 0.060 0.177
V = V = 0.059 V

3 3
offset

V
 

  

 

The differences between the individual voltage offsets and the mean value are 

 

1

2
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The standard deviation is 

 

     
2 2 2

2
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0.000014 V
0.000007 V 0.0026 V.

2
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Thus, the repeatability uncertainty is  

 

0.0026 V.
ranVu   

 

The mean voltage is  

 

0

= 4.80 0.059 V

= 4.859 V

offset
V V V 

  

 

and the repeatability uncertainty in the mean voltage is 

 

0.0026 V 0.0026 V
0.0015 V

1.7323ranVu    . 

 

The mean voltage is the reported output value in this analysis, so 
ranVu should be used for the 

combined uncertainty estimate.  The estimated uncertainties for each parameter are listed in 
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Table 7-10. 

 

Table 7-10.  Estimated Uncertainties for Digital Multimeter Module Parameters 

Parameter 

Name 

Nominal or 

Mean Value 
 Error 

Limits 

Percent 

Conf. 

Standard 

Uncertainty 

Sensitivity 

Coefficient 

Component 

Uncertainty 

AmpOut 4.80 V   0.0877 V 1 0.0877 V 

DMMAcc 0 V  0.0054 V 95 0.0027 V 1 0.0027 V 

DMMres 0 V  0.0005 V 100 0.0003 V 1 0.0003 V 

Vran 0.059 V   0.0015 V 1 0.0015 V 

 

The average DMM output voltage is 4.859 V and the uncertainty in this value is computed by 

taking the root sum square of the standard uncertainties. 
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The degrees of freedom for the DMM output uncertainty are computed using the Welch-

Satterthwaite formula given in equation (7-18). 

  

 

4

4 4 4 4

DMM

DMM

Amp DMM DMM V

Amp DMM DMM V

Out

Out

Out Acc res ran

Out Acc res ran

u

u u u u


   



  

 (7-18) 

 

The degrees of freedom for error source uncertainties were assumed to be infinite, except for the 

uncertainty due to repeatability error, which has a degrees of freedom equal to 2.   So, the 

degrees of freedom for the estimated uncertainty in the DMM output voltage is computed to be 
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7.9 Compute System Output Uncertainty 

In general, the system output uncertainty is equal to the output uncertainty for the final module. 

The associated degrees of freedom for the system output uncertainty are also equal to the degrees 

of freedom for the final module output uncertainty.   

 

In the evaluation of the load cell system modules, it has been illustrated how the uncertainty in 

the output of one module propagates through to the next module in the series.  For a 3 lbf input 

load or weight, the average system output, V , and output uncertainty, Vu , are 4.859 V and  

0.097 V (or 97 mV), respectively. 
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Note:  The load cell system analysis can be duplicated for other calibration 

weights.  The resulting input weights, output voltages and uncertainties could then 

be used to create uncertainty statements for a range of values.   

 

7.10   Report Analysis Results  

The analysis results for the load cell measurement system are summarized in Table 7-11.  As 

should be expected, the signal output uncertainty increases substantially as errors propagate 

through the amplifier module.   

 

Table 7-11.  Summary of Results for Load Cell System Analysis 

Module 

Name 

Module  

Input 

Module 

Output 

Standard 

Uncertainty 

Degrees of 

Freedom 

Load Cell 3 lbf 9.60 mV 0.174 mV  

Amplifier 9.60 mV 4.80 V 87.7 mV  

Digital Multimeter 4.80 V 4.859 V 87.8 mV  

 

It is useful to take a closer look to determine how the uncertainties for each module contribute to 

the overall system output uncertainty.  This can be accomplished by viewing the pareto chart for 

each module, shown in Figures 7-4 through 7-6. 

 

The pareto chart for the load cell module shows that the excitation voltage and zero balance are 

the largest contributors to the load cell output uncertainty.  Replacement of the TMO-2 excitation 

voltage with a precision voltage source could significantly reduce the load cell output 

uncertainty.  Mitigation of the zero balance error, however, would most likely require a different 

load cell. 

 

 

Figure 7-4.  Pareto Chart for Load Cell Module 

 

Because the load cell output uncertainty is multiplied by the amplifier gain, it is the largest 

contributor to the amplifier output uncertainty, as shown in Figure 7-5.  Errors due to amplifier 

balance stability and temperature coefficient also have some effect on the amplifier output 

uncertainty.   
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Figure 7-5.  Pareto Chart for Amplifier Module 

 

As expected, the amplifier output uncertainty is the largest contributor to the digital multimeter 

output uncertainty.  The accuracy of the digital multimeter also adds to the output uncertainty. 

 

 

Figure 7-6.  Pareto Chart for Digital Multimeter Module 

 

7.10.1 Confidence Limits 

The system output uncertainty and degrees of freedom can be used to compute confidence limits 

that are expected to contain the system output voltage with some specified confidence level or 

probability, p.  The confidence limits are expressed as  

 

 / 2, VV t u   (7-19) 

 

where the multiplier, t/2, is the t-statistic and  = 1- p.  

 

For this analysis, let us assume that we want 95% confidence limits (i.e., p = 0.95).  The 

corresponding t-statistic is t0.025, = 1.96 and the confidence limits are computed to be 

 

4.859 V 1.96 0.0878 V   or 4.859 V 0.172 V . 
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CHAPTER 8:  UNCERTAINTY ANALYSIS FOR 
ALTERNATIVE CALIBRATION SCENARIOS 
 

Calibrations are performed to obtain an estimate of the value or bias of selected unit-under-test 

(UUT) attributes.54  In general, calibrations are not considered complete without statements of 

the uncertainty in these estimates.  Developing these statements requires that all relevant sources 

of measurement error are identified and combined in a way that yields viable uncertainty 

estimates.   

 

Unfortunately, confusion regarding which error sources should be included and how they should 

be combined often exists for calibration processes.  Much of this confusion can be eliminated by 

an examination of the objective of each UUT attribute calibration and a consideration of the 

corresponding measurement configuration or “scenario.” 

 

In this chapter, the calibration of a UUT attribute is examined within the context of four 

scenarios.   

 

1. The measurement reference (referred herein as the MTE) measures the value of 

the UUT attribute. 

2. The UUT measures the value of the MTE attribute. 

3. The UUT and MTE attribute values are measured with a comparator. 

4. The UUT and MTE both measure the value of an attribute of a common artifact. 

 

Each scenario yields an observed value, referred to as a “measurement result” or “calibration 

result” and a description of measurement process errors that accompany this result.  This 

information is summarized and then employed to obtain an uncertainty estimate in the calibration 

result.  Examples are given to illustrate concepts and procedures. 

 

8.1 Calibration Scenarios Overview 

The four calibration scenarios listed above are described in detail in the following sections.  The 

descriptions provide guidelines for developing uncertainty estimates relevant to each scenario. 

The structure and content of each description is intended to provide a basis for developing 

whatever mathematical customization is needed for specific measurement situations. 

 

In each scenario, we have a measurement denoted .  The general measurement equation is 

 

 ,UUT b cale    (8-1) 

 

where eUUT,b is the true UUT attribute bias and cal is the calibration error.  Applying the variance 

operator to equation (8-1), the uncertainty in  is 

 

 
,var( ) var( )

var( ) .

cal UUT b cal

cal

u e 



  


 (8-2) 

                                                 
54 An attribute is a measurable characteristic, feature or aspect of an object or substance. 
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8.1.1   Special Notation 

The notation used in this chapter differs slightly from that used in other chapters and appendices 

in this document.  The subscripts and variables designators used in this chapter are summarized 

in Table 8-1. 

 

Table 8-1.  Calibration Scenarios Notation 

Notation Description 

e an individual measurement process error, 
such as repeatability, resolution error, etc. 

 combined errors comprised of individual 
measurement process errors 

m measurement 

b bias 

cal calibration 

true true value 

n nominal value 

x quantities relating to the UUT 

y quantities relating to the MTE 

 

This special notation is intended to provide a means of distinguishing between individual 

measurement process errors and combined errors.  For example, measurement error is  

represented by the quantity m, the error in a calibration result is represented by cal and the bias 

in the UUT attribute is represented by the quantity eUUT,b. 

 

8.1.2 Measurement Error Sources 

Measurement process errors encountered in a given calibration scenario typically include:55 

 

eMTE,b = bias in the measurement reference or MTE 

erep = repeatability or random error 

eres = resolution error 

eop = operator bias 

eother = other measurement error, such as that due to environmental corrections,      

   ancillary equipment variations, response to adjustments, etc. 

 

As discussed in Chapter 2, the sum of the errors encountered during the measurement process 

can be expressed as  

 

 ,m MTE b rep res op othere e e e e       (8-3) 

 

where equation (8-3) is the measurement error model. 

 

                                                 
55 Descriptions of these measurement process errors are given in Chapter 3. 
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8.1.3 Calibration Error and Measurement Error 

As previously discussed, the result of a calibration is taken to be an estimation of the true UUT 

attribute bias, eUUT,b.  The error in the calibration result is represented by the quantity cal.  In all 

four calibration scenarios, the uncertainty in the estimation of eUUT,b is computed as the 

uncertainty in cal.   

 

For some calibration scenarios, cal is synonymous with the measurement error m.  However, in 

other scenarios, cal and m may not have equivalent sign or magnitude. 

 

8.1.4 UUT Attribute Bias 

For calibrations, it is implicitly assumed that the UUT attribute of interest is assigned some 

design or “nominal” value xn.  The true value of the UUT attribute, xtrue, is the nominal value 

plus the UUT attribute bias. 

 

 ,true n UUT bx x e   (8-4)  

 

The difference between the UUT attribute’s true value, xtrue, and the nominal value xn is the UUT 

attribute’s bias eUUT,b.   

 

 ,UUT b true ne x x   (8-5) 

 

Note:   Equation (8-4) does not represent the basic measurement equation  

xn = xtrue + m.  Rather, it is a statement of the relationship between the UUT 

attribute’s true value, its stated nominal value and its bias.  In this context, the 

relationship between measurement error and the UUT attribute bias is  

m = - eUUT,b. 

 

In some cases, the UUT is a passive item, such as a gage block or weight, whose attribute of 

interest is a simple characteristic like length or mass.  In other cases, the UUT is an active device 

such as a voltmeter or tape measure, whose attribute consists of a reading or other output like 

voltage or measured length.  In the former case, the concepts of true value and nominal value are 

straightforward.  In the latter case, some comment is needed. 

 

As stated earlier, the result of a calibration is considered to be an estimate of the quantity eUUT,b.  

From equation (8-4), if the UUT attribute has a nominal value xn, estimating xtrue is equivalent to 

estimating eUUT,b.  Additionally, eUUT,b is an “inherent” property of the UUT attribute, 

independent of its resolution, repeatability or other characteristic dependent on its application or 

usage environment.   

 

Accordingly, if the UUT’s nominal value consists of a measured reading or other actively 

displayed output, the UUT bias must be taken to be the difference between the true value of the 

quantity being measured and the value internally sensed by the UUT, with appropriate 

environmental or other adjustments applied to correct this value to reference (calibration) 

conditions. 

 

For example, suppose the UUT is a steel yardstick whose length is a random variable following a 

probability distribution with a standard deviation arising from variations in the manufacturing 
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process. The UUT is used under specified nominal environmental conditions where repeatability, 

resolution error, operator bias and other error sources may come into play.  In this case, the bias 

of the yardstick is systematically present, regardless of whatever chance relationship may exist 

between the length of the measured object, the closest observed “tick mark,” the temperature of 

the measuring environment, the perspective of the operator, and so on. 

 

8.1.5 MTE Attribute Bias 

The value of the MTE attribute, which the value of the UUT attribute is compared against, has an 

inherent deviation eMTE,b from its nominal attribute value yn or value stated in a calibration 

certificate or other document.  The true value of the MTE attribute ytrue is the nominal value plus 

the MTE attribute bias. 

 

 ,true n MTE by y e   (8-6) 

 

Note:   As with Equation (8-4), Equation (8-6) does not represent the basic 

measurement equation xn = xtrue + m.   

 

As with the UUT, the MTE may be a passive item, such as a gage block or weight or an active 

device, such as a voltmeter or tape measure.  In either case, it is important to bear in mind that 

eMTE,b is an inherent property of the MTE attribute, exclusive of other errors such as MTE 

resolution or the repeatability of the measurement process.  The value of the MTE attribute may 

vary with environmental deviations, but it can usually be adjusted or corrected to some reference 

set of conditions.  

 

8.2  Scenario 1: The MTE Measures the UUT Attribute Value 

In this calibration scenario, the UUT is a passive device whose attribute provides no reading or 

other metered output.  Its output may consist of a generated value, as in the case of a voltage 

reference, or a fixed value, as in the case of a gage block.56  The measurement equation is  

 

 true my x    (8-7) 

 

where y is the measurement result obtained with the MTE, xtrue is the true value of the UUT 

attribute and m is the measurement error. 

 

Substituting equation (8-4) into equation (8-7), the measurement equation can be written as 

 

 ,n UUT b my x e    . (8-8) 

 

The difference y – xn is a measurement of the UUT attribute bias eUUT,b.  This quantity is denoted 

by the variable   and defined as 

 

                                                 
56 Cases where the MTE measures the value of a metered or other UUT attribute exhibiting a displayed value are covered later as 

special instances of Scenario 4. 
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,

n

UUT b m

UUT b cal

y x

e

e







 

 

 

 (8-9) 

 

where 

 , .cal m MTE b rep res op othere e e e e        (8-10) 

 

Since the UUT is a passive device, resolution error and operator bias arise exclusively from the 

use of the MTE.  In addition, the uncertainty due to repeatability is estimated from a random 

sample of measurements taken with the MTE.  However, variations in UUT attribute value may 

contribute to this estimate.  Random variations in UUT attribute value and random variations due 

to other causes are not separable from random variations due to the MTE.57  Consequently, erep 

must be taken to represent a “measurement process error” rather than an error attributable to any 

specific influence.   

 

Given these considerations, the error sources erep, eres and eop in equation (8-10) are 

 

 

,

,

,

rep MTE rep

res MTE res

op MTE op

e e

e e

e e







 (8-11) 

 

where eMTE,rep represents the repeatability of the measurement process.  The “MTE” part of the 

subscript indicates that the uncertainty in the error will be estimated from a sample of 

measurements taken by the MTE.  

 

From equations (8-10) and (8-11), the error in the calibration result  is 

 

 , , , ,cal MTE b MTE rep MTE res MTE op othere e e e e       (8-12) 

 

and the uncertainty in  is  

 

 , , , ,

2 2 2 2 2

, , , ,

var( )

var( ) var( ) var( ) var( ) var( )

.

cal cal

MTE b MTE rep MTE res MTE op other

MTE b MTE rep MTE res MTE op other

u

e e e e e

u u u u u



    

    

 (8-13) 

 

The error source eother may arise from corrections ensuing from environmental factors, such as 

thermal expansion.  In this case, it may be necessary to correct measured values to those that 

would be attained at some reference temperature, such as 20 C. 

 

For example, let the UUT attribute be gage block length and the MTE attribute be the reading 

obtained with a super micrometer.  If UUT,env and MTE,env represent thermal expansion 

                                                 
57 As stated in Section 2.3, random variations in a measured quantity are not separable from random variations due other error 

sources. 
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corrections to the UUT and MTE attributes, respectively, then the mean value of the 

measurement sample would be corrected by an amount equal to58 

 

 , ,env MTE env UUT env     (8-14) 

 

and the error in the environmental correction env would be written 

 

 , , .other env MTE env UUT enve e e e    (8-15) 

 

The error in the corrected calibration result corr =  – env is 

 

 , , , , , ,cal MTE b MTE rep MTE res MTE op MTE env UUT enve e e e e e        (8-16) 

 

and the uncertainty in corr is  

 

 , , , , , ,

2 2 2 2 2 2

, , , , , , , ,

var( )

var( ) var( ) var( ) var( ) var( )

2

cal cal

MTE b MTE rep MTE res MTE op MTE env UUT env

MTE b MTE rep MTE res MTE op MTE env UUT env env MTE env UUT env

u

e e e e e e

u u u u u u u u







     

      

 (8-17) 

 

where the correlation coefficient env accounts for any correlation between eMTE,env and eUUT,env.  

The correlation coefficient can range in value from – 1 to +1.  If the same temperature 

measurement device (e.g., thermometer) is used to make both the UUT and MTE corrections, 

then 

 

 1env   (8-18)  

 

and equation (8-17) can be rewritten as 

 

 2 2 2 2 2 2

, , , , , , , ,2 .cal MTE b MTE rep MTE res MTE op MTE env UUT env MTE env UUT envu u u u u u u u u         (8-19) 

 

8.3  Scenario 2 : The UUT Measures the MTE Attribute Value 

In this scenario, the MTE is a passive device whose reference attribute provides no reading or 

other metered output.  Its output may consist of a generated value, as in the case of a voltage 

reference, or a fixed value, as in the case of a gage block.59  The measurement equation is 

  

 x = ytrue + m (8-20) 

 

                                                 
58 The form of this expression arises from the fact that thermal expansion of the gage block results in an inflated gage block 

length, while thermal expansion of the micrometer results in applying additional thimble adjustments to narrow the gap between 

the anvil and the spindle, resulting in a deflated measurement reading. 
59 Cases where the UUT measures the value of a metered or other MTE attribute exhibiting a displayed value are covered later as 

special instances of Scenario 4. 
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where x is the value measured by the UUT, ytrue is the true value of the MTE attribute being 

measured and m is the measurement error.  Substituting equation (8-6) into equation (8-20), the 

measurement equation can be written as 

 

 x = yn + eMTE,b + m. (8-21) 

 

The difference x – yn is a measurement of the UUT attribute bias eUUT,b.  This calibration result is 

denoted by the variable   and defined by 

 

 ,n MTE b mx y e      (8-22) 

 

For this scenario, the measurement error model is 

 

 ,m UUT b rep res op othere e e e e       (8-23) 

 

where eUUT,b is the UUT attribute bias.  In this scenario, the MTE is a passive device.  Therefore, 

resolution error and operator bias arise exclusively from the use of the UUT.  In addition, the 

uncertainty due to repeatability is estimated from a random sample of measurements taken with 

the UUT.  Consequently, the error sources erep, eres and eop in equation (8-23) are 

 

 

,

,

, .

rep UUT rep

res UUT res

op UUT op

e e

e e

e e







 (8-24) 

 

The “UUT” part of the subscript indicates that the uncertainty in the error will be estimated from 

a sample of measurements taken by the UUT.  The error source eother may need to include mixed 

contributions as described in Scenario 1. 

 

Substituting equations (8-23) and (8-24) into equation (8-22) and rearranging gives 

 

 , , , , ,UUT b MTE b UUT rep UUT res UUT op othere e e e e e        (8-25) 

 

As in scenario 1, equation (8-25) provides an expression that is separable into a measurement  

of the UUT attribute bias, eUUT,b, and a calibration error, cal, given by 

 

 ,UUT b cale    (8-26) 

where 

 , , , ,cal MTE b UUT rep UUT res UUT op othere e e e e      . (8-27) 

 

The uncertainty in , and thus, eUUT,b is 
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, , , ,
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var( ) var( ) var( ) var( ) var( )
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cal cal

MTE b UUT rep UUT res UUT op other

MTE b UUT rep UUT res UUT op other

u

u u u u u



    



    

    

 (8-28) 

 

8.4  Scenario 3: The MTE and UUT Attribute Values are Compared 

In this scenario, a device called a “comparator” is used to measure or compare UUT and MTE 

attribute values.60  In keeping with the basic notation, the indicated value of the UUT attribute x 

is expressed as 

 ,true UUT mx x    (8-29) 

 

and the indicated value of the MTE attribute y is expressed as 

 

 ,true MTE my y    (8-30) 

 

where UUT,m is the measurement error involved in the use of the comparator to measure the UUT 

attribute value and MTE,m is the measurement error involved in the use of the comparator to 

measure the MTE attribute value. 

 

As discussed in Sections 8.1.4 and 8.1.5, for calibrations, the UUT attribute and MTE attribute 

are assigned some design or “nominal” values xn and yn, respectively.  Substituting equation  

(8-4) into equation (8-29) gives 

 

 , ,n UUT b UUT mx x e    . (8-31) 

 

Similarly, substituting equation (8-6) into equation (8-30) gives  

 

 , ,n MTE b MTE my y e    . (8-32) 

 

The result of the comparison is a measured deviation  , which is expressed as   

 

 
, , , ,( ).n n UUT b MTE b UUT m MTE m

x y

x y e e



 

 

     
 (8-33) 

 

In most calibrations involving comparators, xn = yn and equation (8-33) becomes 61 

 

 , , , ,( )UUT b MTE b UUT m MTE me e      . (8-34) 

 

As with the previous scenarios, equation (8-34) provides an expression that is separable into a 

measurement  of the UUT attribute bias, eUUT,b, and a calibration error, cal, given by 

                                                 
60 The MTE and UUT attributes may be measured sequentially or simultaneously, depending on the comparator device. 
61 To accommodate cases where yn  xn,  = (x – xn) – (y – yn).  For example, consider a case where the MTE is a 2 cm gage block 

and the UUT is a 1 cm gage block.  Suppose that the comparator readings for the MTE and UUT are 2.10 cm and 0.99 cm, 

respectively.  Then,  = (0.99  1.0 ) – (2.10  2.0) =  0.110 cm.  The corrected value for the UUT attribute is  xc = x +   = 1.0 

cm + ( 0.110) cm = 0.89 cm. 
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 ,UUT b cale    (8-35) 

where 

 , , ,( )cal UUT m MTE m MTE be     . (8-36) 

 

The measurement error model for MTE,m is 

 

 , , , , , ,MTE m c b MTE rep MTE res MTE op MTE othere e e e e       (8-37) 

 

where ec,b represent the bias of the comparator.  Similarly, the measurement error model for 

UUT,m is 

 

 , , , , , ,UUT m c b UUT rep UUT res UUT op UUT othere e e e e      . (8-38) 

 

Substituting equations (8-37) and (8-38) into equation (8-36), cal is 

 

 
, , , , , ,

, , ,

( ) ( ) ( )

( ) .

cal UUT rep MTE rep UUT res MTE res UUT op MTE op

UUT other MTE other MTE b

e e e e e e

e e e

      
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 (8-39) 

 

The uncertainty in  is 

 

 
, , , , , ,

, , ,
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cal cal

UUT rep MTE rep UUT res MTE res UUT op MTE op

UUT other MTE other MTE b

u
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 (8-40) 

 

Accounting for possible correlations between eUUT,op and eMTE,op and between eUUT,other and 

eMTE,other, the uncertainty in  can be expressed as 

 

 

2 2 2 2 2 2

, , , , , ,

2 2 2

, , , , , , ,2 2

MTE rep UUT rep MTE res UUT res MTE op UUT op

cal
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u u u u u u
u

u u u u u u u 
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

    
. (8-41) 

 

8.5  Scenario 4: The MTE and UUT Measure a Common Artifact 

In this scenario, both the MTE and UUT measure the attribute value of a common artifact.  The 

measurements by the MTE and UUT are made and recorded separately.  An example of this 

scenario is the calibration of a thermometer (UUT) using a temperature reference (MTE), where 

both the UUT and MTE are placed in an oven. 

 

Denoting the true value of the artifact as T, the UUT measurement equation is  

  

 ,UUT mx T    (8-42) 

 

where UUT,m is the measurement process error for the UUT measurement of the artifact’s value.  
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Similarly, the MTE measurement equation is  

 

 ,MTE my T    (8-43) 

 

where MTE,m is the measurement process error for the MTE measurement of the artifact’s value. 

 

The difference between the measurement results   is expressed as   

 

 
, , .UUT m MTE m

x y

 

 
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 (8-44)  

 

The measurement error model for UUT,m is 

 

 , , , , , ,UUT m UUT b UUT rep UUT res UUT op UUT othere e e e e       (8-45) 

 

and the measurement error model for MTE,m is 

 

 , , , , , ,MTE m MTE b MTE rep MTE res MTE op MTE othere e e e e      . (8-46) 

 

Substituting equations (8-45) and (8-46) into equation (8-44), provides an expression that is 

separable into a measurement  of the UUT attribute bias, eUUT,b, and a calibration error, cal, 

given by 

 

 ,UUT b cale    (8-47) 

where 

 
, , , , ,
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e e e e
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   
 (8-48) 

 

As in scenario 3, the uncertainty in  is  
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 (8-49) 

 

Accounting for possible correlations between eUUT,op and eMTE,op and between eUUT,other and 

eMTE,other, the uncertainty in  can be expressed as 
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. (8-50)  
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8.5.1  Special Cases for Scenario 4 

There are two special cases of Scenario 4 that may be thought of as variations of Scenarios 1 and 

2.  Both cases are accommodated by the Scenario 4 definitions and expressions previously 

developed.  

 

Case 1:  The MTE measures the UUT and both the MTE and UUT provide a metered or 

other displayed output. 

In this case, the common artifact is the UUT attribute, consisting of a “stimulus” embedded in 

the UUT.  An example would be a UUT voltage source whose output is indicated by a digital 

display and is measured using an MTE voltmeter. 

 

Case 2:  The UUT measures the MTE and both the MTE and UUT provide a metered or 

other displayed output. 

In this case, the common artifact is the MTE attribute, consisting of a “stimulus” embedded in 

the MTE.  An example would be an MTE voltage source whose output is indicated by a digital 

display and is measured using a UUT voltmeter. 

 

8.6  Uncertainty Analysis Examples 

Four scenarios have been discussed that yield expressions for calibration uncertainty.  In all 

scenarios, the calibration result is expressed as 

 

,UUT b cale    

 

 and the calibration uncertainty is 

 

var( )cal calu  . 

 

Uncertainty analysis examples for the four calibration scenarios are provided in the following 

subsections.   

 

8.6.1  Scenario 1: The MTE Measures the UUT Attribute Value 

In this scenario, the measurement result is  = y – xn and cal is expressed in equation (8-12).  The 

example for this scenario consists of calibrating a 30 gm mass with a precision balance.  The 

uncertainty in the local gravity is considered to be negligible in this measurement process.    

Multiple measurements of the UUT mass are taken and the sample statistics are computed to be 

 

 Sample Mean  =  30.000047 gm 

 Standard Deviation =  1.15  10-5 gm 

 Uncertainty in the Mean = 6.64  10-6 gm 

 Sample Size = 3 

 

The measurement result is   = (30.000047 – 30) gm = 4.7  10-5 gm.  However, the 

measurements are not taken in a vacuum, so the buoyancy of displaced air can introduce 

measurement error.  The balance is calibrated with calibration weights with a density of  

wt = 8.0 gm/cm3.  The air buoyancy correction is 
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
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where y  is the sample mean, air is the local air density and UUT is the density of the UUT 

mass.  For this analysis, we will assume that air = 1.2  10-3 gm/cm3 and UUT = 8.4 gm/cm3. 

The corrected sample mean is computed to be 
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and the corrected calibration result is corr  = (29.99975 – 30) gm = – 2.5  10-4 gm.   

 

In the mass calibration scenario, the following measurement process errors must be considered: 

 

 Bias of the precision balance, eMTE,b. 

 Repeatability, eMTE,rep. 

 Error due to the digital resolution of the balance, eMTE,res. 

 Environmental factors error resulting from the buoyancy correction, eenv. 

 

The error in corr  is 

, , ,cal MTE b MTE rep MTE res enve e e e      

 

where 

, 1 2air UUTenv UUT enve e c e c e     

 

and 
air

e  and 
UUT

e  are the errors in the air and UUT densities, respectively.  The coefficients c1 

and c2 are sensitivity coefficients that determine the relative contribution of the errors 
air

e  and 

UUT
e  to the total error eenv.  The uncertainty in corr  is 
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The correlation coefficient env accounts for any correlation between 
air

e  and 
UUT

e .  The 

correlation coefficient can range in value from – 1 to +1.  In this analysis, the error in the air 

density is considered to be uncorrelated to the error in the density of the UUT mass.  Therefore, 

env = 0 and the uncertainty ucal can be expressed as  
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The sensitivity coefficients are computed to be62 
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UUT UUT air UUT UUT air UUT

air air wt

UUT air UUT

y
c y y

y

   

      

  

  

      
       
       


   




   



   3 4 30.99985
cm / gm 5.1 10 cm

0.99971

   

 

 

The distributions, limits, confidence levels and standard uncertainties for each error source are 

summarized in Table 8-2. 

 

                                                 
62 Guidance on the development of multivariate error models is provided in Chapter 6. 
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Table 8-2.  Summary of Scenario 1 Uncertainty Estimates 

 

 

Error 

 

Error 

Limits 

Confidence 

Level 

(%) 

Error 

Distribution 

 

Deg. of 

Freedom 

 

Analysis 

Type 

 

Standard 

Uncertainty 

eMTE,b  0.12 gm 95.00 Normal Infinite B 6.12  10-2 gm 

erep   Student’s t 2 A 6.64  10-6 gm 

eres  0.005 gm 100.00 Uniform Infinite B 2.9  10-3 gm 

air
e    3.6  10-5  gm/cm3 95.00 Normal Infinite B 1.84  10-5 gm/cm3 

UUT
e   0.15 gm/cm3 95.00 Normal Infinite B 0.077 gm/cm3 

 

Using the data in Table 8-2, the uncertainty in corr  is computed to be 

 

       

 

2 2 2 2
2 6 3 5

2
4

3 11 6 11 9

3 2

6.12 10 6.64 10 2.9 10 0.18 1.84 10
gm

5.1 10 0.077

= 3.75 10 4.41 10 8.41 10 1.1 10 1.54 10 gm

= 3.75 10 gm = 6.12 10 gm.

calu

   



    

 

        


   

        

 

 

 

The effective degrees of freedom eff for ucal can be estimated using the Welch-Satterthwaite 

formula. 

 
4

4 4 4 444 4
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4

4 4 4 444 4
1 2,, ,

4

4
,

2

2

air UUT

air UUT

air UUT
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MTE repMTE b MTE res

MTE b MTE rep MTE res

cal

MTE repMTE b MTE res

cal

MTE rep

u

c u c uuu u

u

c u c uuu u

u

u

 

 

 



    



   



   
   

 

 

 

Therefore, the degrees of freedom are computed to be 

 

 

 
 

4
2

4
4 15

4
6

6.12 10
2 2 0.92 10 2 9.2 10

6.64 10
eff






         



 

 

The results for the calibration of the 30 gm UUT mass are reported as 

 

 nx   =  30 gm 

 corr   =  – 2.5  10-4 gm 
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 ucal = 6.13  10-2 gm , infinite degrees of freedom. 

 

8.6.2  Scenario 2:  The UUT Measures the MTE Attribute Value 

In this scenario, the measurement result is  = x – yn and cal is expressed in equation (8-26).  The 

example for this scenario consists of calibrating an analog micrometer with a 10 mm gage block 

reference.  Multiple readings of the 10 mm gage block length are taken with the micrometer 

under laboratory environmental conditions of 24 C  1 C.  The sample statistics are computed 

to be 

 

 Sample Mean  =  9.999 mm 

 Standard Deviation =  21.7 m 

 Uncertainty in Mean = 7.7 m 

 Sample Size = 8 

  

The measurement result is   = (9.999 – 10) mm = –1 m.  However, both the micrometer 

reading and the gage block length must be corrected to 20 C standard reference temperature.  In 

this example, the gage block steel has a coefficient of thermal expansion of MTE = 11.5  10-

6/C and the micrometer has a coefficient of thermal expansion of UUT = 5.6  10-6/ C.  For the 

purposes of this analysis, the uncertainties in MTE and UUT are assumed to be negligible. 

 

The net effect of thermal expansion on the measurement result   is 

 

, ,env UUT env MTE env     

 

where ,UUT env  and ,MTE env  represent thermal expansion of the micrometer and gage block 

dimensions, respectively.  The net length expansion is computed from the temperature difference 

T, the average measured length x , the coefficient of thermal expansion for the gage block MTE 

and the coefficient of thermal expansion for the micrometer UUT. 

 

 

  6

4

4 C 9.999mm 5.6 11.5 10 / C

= 2.36 10 mm = 0.236μm

env UUT MTET x  





    

      

  

 

 

The corrected calibration result corr  is computed to be 

 

 1 0.236 μm

= 1.24μm

corr env   

  



 

 

In the micrometer calibration scenario, the following measurement process errors must be taken 

into account: 

 

 Bias in the value of the 10 mm gage block length, eMTE,b. 
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 Error associated with the repeat measurements taken, eUUT,rep. 

 Error associated with the analog resolution of the micrometer, eUUT,res. 

 Bias resulting from the operator’s use of the micrometer to measure the gage block, 

eUUT,op. 

 Environmental factors error resulting from the thermal expansion correction, eenv. 

 

The error in corr  is 

 

, , , ,cal MTE b UUT rep UUT res UUT op enve e e e e       

where  

 

 env T UUT MTE T Te e x c e        

 

and cT is the sensitivity coefficient and eT is the error due to the environmental temperature 

variation.  

 

The uncertainty in corr  is 

 

         2

, , , ,

2 2 2 2 2 2

, , , ,

var( )

var var var var var

.

cal cal

MTE b UUT rep UUT res UUT op T T

MTE b UUT rep UUT res UUT op T T

u

e e e e c e

u u u u c u



 

 



    

    

 

 

The distributions, limits, confidence levels and standard uncertainties for each error source are 

summarized in Table 8-3. 

 

Table 8-3.  Summary of Scenario 2 Uncertainty Estimates 

 

Error 

Source 

Error 

Limits 

(m) 

Conf. 

Level 

(%) 

 

Error 

Distribution 

Degrees 

of 

Freedom 

 

Analysis 

Type 

Standard 

Uncertainty 
(m) 

 

Sensitivity 

Coefficient 

eMTE,b + 0.18, -0.13 m 90.00 Lognormal Infinite B 0.09 m 1 

eUUT,rep   Student’s t 7 A 7.7 m 1 

eUUT,res  5.0 m 95.00 Normal Infinite B 2.6 m 1 

eUUT,op  5.0 m 95.00 Normal Infinite B 2.6 m 1 

eT  1 C 95.00 Normal Infinite B 0.51 C -5.910-2 m/C   

 

Using the data in Table 8-3, the uncertainty in corr is 

 

         
22 2 2 2 20.09 7.7 2.6 2.6 5.9 10 0.51 μm

0.0081 59.29 6.76 6.76 0.0009 μm

72.82 μm 8.53μm

calu        

    

 
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The effective degrees of freedom for ucal are computed using the Welch-Satterthwaite formula.  

 
4

4 44 4 4 4
, ,, ,
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4
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,

7

7 .

cal
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UUT rep UUT opMTE b UUT res T T

MTE b UUT rep UUT res UUT op T

cal

UUT rep UUT opMTE b UUT res T T
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UUT rep

u

u uu u c u

u

u uu u c u

u

u



    
 



 



   



   
   

 

 

 

The degrees of freedom are computed to be 

 

 
4

48.53
7 7 1.108 7 1.507 10.6

7.7
eff

 
       

 
 

 

The results for the calibration of the micrometer at 10 mm nominal length are reported as 

 

 ny   =  10 mm 

 corr   =  – 1.24 m 

 ucal = 8.53 m , 11 degrees of freedom. 

 

8.6.3 Scenario 3:  MTE and UUT Attribute Values are Compared 

In this scenario, the measurement result is  = x – y and cal is expressed in equation (8-39).  The 

example for this scenario consists of calibrating an end gauge, with a nominal length of 50 mm, 

using an end gauge standard of the same nominal length.  The calibration process consists of 

measuring and recording the difference between the two end gauges using a comparator 

apparatus. 

 

In this case, the difference in the lengths of the two end gauges are measured.  The sample 

statistics are computed to be 

 

 Sample Mean  =  215 nm 

 Standard Deviation =  9.7 nm 

 Uncertainty in Mean = 4.33 nm 

 Sample Size = 5 

  

and the measurement result is 215nm  .  The temperature for both end gauges during 

calibration is 19.9 C  0.5 C.  Consequently, the calibration result must be corrected to the 

standard reference temperature of 20 C.  The corrected calibration result corr  is computed from 
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, ,

corr env

UUT env MTE env

  

  

 

  
 

where  

 

 ,UUT env UUTT x       = thermal expansion of the UUT end gage 

 ,MTE env MTET y       = thermal expansion of the MTE end gage 

 x  =  the average UUT end gage length during calibration 

 y  = the average MTE end gage length during calibration 

 UUT = coefficient of thermal expansion for the UUT end gauge 

 MTE = coefficient of thermal expansion for the MTE end gauge 

 T = difference in the temperature of the end gauge from the 20 C  

  

For the purposes of this example, we will assume that UUT = MTE =  = 11.5  10-6/C.  

Therefore, corr  can be expressed as 

 

 

 1

corr T x y T

T

    

 

      

  
 

 

and is computed to be 

 

 

-6

-6

215nm 1 0.1 C 11.5 10 / C

215nm 1 1.15 10

215nm.

corr      

  



 

 

In the end gauge calibration scenario, the following measurement process errors must be taken 

into account: 

 

 Bias in the value of the 50 mm end gage standard length, eMTE,b. 

 Bias of the comparator, ec,b 

 Error associated with the repeat measurements taken, erep. 

 Digital resolution error for the comparator, eres. 

 Operator bias, eop 

 Environmental factors error resulting from the thermal expansion correction, eenv. 

 

As shown in equations (8-37) through (8-39), the comparator bias cancels out and the error in 

corr  is 

 

 ,cal rep res op env MTE be e e e e        

where 

 , , ,rep UUT rep MTE rep rep
e e e e


    

 , ,res UUT res MTE rese e e   
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 , , ,env UUT env MTE env env
e e e e


     

and 

 1 2,
.Tenv

e c e c e    

 

The uncertainty in corr  is 

 

         , , 1 2 ,,

2 2 2 2 2 2 2 2 2

, , , , 1 2 1 2 ,,

var( )

var var var var var

2 2 .

cal cal

UUT res MTE res T op MTE brep

UUT res MTE res res UUT res MTE res T env T op MTE brep

u

e e e c e c e e e

u u u u u c u c u c c u u u u



 



 



 



       

        

 

 

The UUT and MTE resolution uncertainties are equal to the comparator resolution uncertainty, 

uUUT,res = uMTE,res =  uc,res.  In addition, the UUT and MTE resolution errors are uncorrelated, so 

that res = 0.  The UUT and MTE end gage length expansion corrections will err in the same 

direction and by a constant proportional amount, so that env = 1.  Therefore, the uncertainty ucal 

can be expressed as  

 

 

2 2 2 2 2 2 2 2

, 1 2 1 2 ,,

22 2 2

, 1 2 ,,

2 2

2

cal c res T T op MTE brep

c res T MTE brep

u u u c u c u c c u u u u

u u c u c u u

 



 



      
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The sensitivity coefficients c1 and c2 are 

  

6

1

3

11.5 10 / C 215nm

= 2.47 10 nm / C

envc
T


 




     


 

 and 2 0.1 C 215nm

= 21.5 C nm

envc T






      



  

 

 

Using the data in Table 8-4, the uncertainty in corr  is 

 

The distributions, limits, confidence levels and standard uncertainties for each error source are 

summarized in Table 8-4. 

 

Table 8-4.  Summary of Scenario 3 Uncertainty Estimates 

Error 

Source 

 

Error 

Limits 

Conf. 

Level 

(%) 

 

Error 

Distribution 

Degrees 

of 

Freedom 

 

Analysis 

Type 

Standard 

Uncertainty 

(nm) 

 

Sensitivity 

Coefficient 

,rep
e


   Student’s t 4 A 4.33 nm 1 

ec,res  1 nm 100.0 Uniform Infinite B 0.577 nm 1 

eT  0.5 C 95.00 Normal Infinite B 0.255 C 2.4710-3 nm/C 

e  0.510-6 /C 95.00 Normal Infinite B 0.25510-6 /C - 21.5 Cnm  

eop  5 nm 95.00 Normal Infinite B 2.55 nm 1 

eMTE,b    Normal 18 A,B 25 nm 1 
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         
22 2 2 23 6

7

4.33 2 0.577 2.47 10 0.255 21.5 0.255 10 2.55 25 nm

18.75 0.67 3.90 10 6.51 625 nm

650.9 nm 25.5nm.

calu  


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     
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The effective degrees of freedom for ucal are computed using the Welch-Satterthwaite formula. 
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The degrees of freedom are computed to be 

 

 

   

4

4 4

25.5 423,680.8 423,680.8
19.5

70.3 21,701.4 21,771.74.33 25

5 18

eff    




 

 

The results for the calibration of the UUT end gauge with 50 mm nominal length are reported as 

 

 nx   =  50 mm 

 corr   =  215 nm 

 ucal = 25.4 nm , 20 degrees of freedom. 

 

8.6.4 Scenario 4: The MTE and UUT Measure a Common Artifact 

For this scenario, both the MTE and UUT measure the value or output of a common artifact.  

The measurement result is  = x – y and cal is expressed in equation (8-48). 

 

The example for this scenario consists of calibrating a digital thermometer at 100 C using an 

oven and an analog temperature reference.  The oven temperature is adjusted using its internal 

temperature probe and the readings from the thermometer and temperature reference are 

recorded.  The resulting sample statistics are computed to be 

 

 Sample Mean, UUT  =  100.50 C Sample Mean, MTE  =  100.000 C 

 Standard Deviation, UUT =  0.03 C Standard Deviation, MTE =  0.006 C 

 Uncertainty in Mean, UUT = 0.01 C Uncertainty in Mean, MTE = 0.002 C 

 Sample Size = 9 Sample Size = 9 

 

and the measurement result is 100.50 100.000 0.50 C     .  In the thermometer calibration 

scenario, the following measurement process errors must be taken into account: 
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 Bias of the temperature reference, eMTE,b. 

 Error due to repeat measurements taken with the temperature reference, eMTE,rep. 

 Error due to repeat measurements taken with the thermometer, eUUT,rep. 

 Analog resolution error for the temperature reference, eMTE,res. 

 Digital resolution error for the thermometer, eUUT,res. 

 Error due to the non-uniformity of the oven temperature, eenv. 

 

The short-term effect of oven stability is accounted for in the sample of MTE measurements.  If 

repeat measurements were not collected, then the error due to oven stability would be included as 

part of the environmental factors error, eenv.   

 

The error in   is 

 

, , , , ,( ) ( ) .cal UUT rep MTE rep UUT res MTE res MTE b enve e e e e e        

 

The uncertainty in   is 

 

 , , , , ,

2 2 2 2 2 2

, , , , ,

var( )

var( ) var( ) var( ) var

.

cal cal

MTE b UUT rep MTE rep UUT res MTE res env

MTE b UUT rep MTE rep UUT res MTE res env

u

e e e e e e

u u u u u u



      

     

 

 

The distributions, limits, confidence levels and standard uncertainties for each error source are 

summarized in Table 8-5. 

 

Table 8-5.  Summary of Scenario 4 Uncertainty Estimates 

 

Error 

Source 

Error 

Limits 

(C) 

Confidence 

Level 

(%) 

 

Error 

Distribution 

Degrees  

of 

Freedom 

 

Analysis 

Type 

Standard 

Uncertainty 

(C) 

eMTE,b    Normal 29 A,B 0.02 

eUUT,rep   Student’s t 8 A 0.22 

eMTE,rep   Student’s t 8 A 0.075 

eUUT,res  0.005 100.00 Uniform infinite B 0.0029 

eMTE,res  0.0025 95.00 Normal infinite B 0.0013 

eenv  2 95.00 Normal Infinite B 1.02 

 

Using the data in Table 8-5, the uncertainty in   is 

 

           
2 2 2 2 2 2

0.02 0.22 0.075 0.0029 0.0013 1.02 C

0.0004 0.0484 0.0056 0.000008 0.000002 1.0404 C

1.095 C 1.05 C

calu       

      

   

 

 

The Welch-Satterthwaite formula for the effective degrees of freedom for ucal is  
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The degrees of freedom are computed to be 
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1.05
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The results for the calibration of the UUT digital thermometer at 100 C nominal temperature are 

reported as 

 

 x   =  100.50 C 

 y   =  100.000 C 

    =  0.50 C 

 ucal = 1.05 C , infinite degrees of freedom. 
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CHAPTER 9:  UNCERTAINTY GROWTH 
 

Over time, the error or bias in an MTE attribute or parameter may increase, remain constant or 

decrease.  The uncertainty in this error, however, always increases with time since measurement 

or calibration.  This is the fundamental postulate of uncertainty growth.  This chapter discusses 

the methodology to project the growth in the MTE attribute or parameter bias uncertainty.63  

 

Figure 9-1 illustrates uncertainty growth over time for a typical attribute or parameter bias, b.  

The sequence shows the probability distribution at three different times, with the uncertainty 

growth reflected in the spreads in the curves.  The out-of-tolerance probabilities at the different 

times are represented by the shaded areas under the curves. 

 

 

Figure 9-1.  Measurement Uncertainty Growth 

  

Uncertainty growth over time corresponds to an increase in out-of-tolerance probability over 

time, or equivalently, to a decrease in in-tolerance probability or measurement reliability R(t) 

over time.  Plotting R(t) versus time, as shown in Figure 9-2, suggests that measurement 

reliability can be modeled by a time-varying function.  Once this function is determined, then 

MTE parameter bias uncertainty can be computed as a function of time. 

 

 

Figure 9-2.  Measurement Reliability versus Time 

 

9.1 Basic Methodology 

The uncertainty, u(t), in the parameter bias, b (t), at time t elapsed since measurement is 

                                                 
63 Dr. H. Castrup, “Uncertainty Growth Estimation in UncertaintyAnalyzer,” Integrated Sciences Group Technical Report, March 

27, 2002. Revised June 17, 2008. 
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computed using the value of the initial measurement uncertainty and the reliability model for the 

parameter population.  The basic concept is an extension of the ergodic theorem64 that states that 

the distribution of an infinite population of values at equilibrium is identical to the distribution of 

values attained by a single member sampled an infinite number of times. 

 

The reliability model predicts the in-tolerance probability for the parameter bias population as a 

function of time elapsed since measurement.  It can be thought of as a function that quantifies the 

stability of the population.  In this view, we begin with a population measurement reliability 

immediately following measurement at time t = 0 and extrapolate to the measurement reliability 

at time t > 0.  The measurement reliability of the parameter bias at time t is related to the bias 

uncertainty according to 
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   (9-1) 

 

where f [b(t)] is the probability density function (pdf) for the parameter bias and –L1 and L2 are 

the tolerance limits.  For example, if we assume that b(t) is normally distributed, then  
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where (t) represents the expected or true parameter bias at time t.   The relationship between L1, 

L2, b(t) and (t) is shown in Figure 9-3, along with the distribution of the population of biases 

for the measurement parameter of interest.  

 

 

Figure 9-3.  Parameter Bias Distribution 

 

At time t, (t) is defined by the relation 

 

   0 ( )t t     (9-3) 

 

                                                 
64 See for example, Gray, R. M.: Probability, Random Processes, and Ergodic Properties, Springer-Verlag 1987.  Revised 2001 

and 2006-2007 by Robert M. Gray. 
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where 0 is the true parameter bias at t = 0 and (t) is a drift function.65  

 

At the time of measurement (t = 0), a value for 0 is estimated (measured) and the uncertainty in 

this estimate is designated u0.  The following section discusses a method for calculating u(t),  

given u0. 

 

9.2 Projected Uncertainty 

Given the reliability model for the individual parameter bias and its initial uncertainty, the 

uncertainty u(t) in equation (9-1) could be obtained directly by iteration or other means.  

However, available information typically relates only to the characteristics of the reliability 

model for the population to which the parameter belongs.  Therefore, the reliability model for the 

population is applied. 

 

Using a population reliability model to estimate uncertainty growth for an individual parameter 

employs the following set of assumptions: 

 

1. The result of a measurement is an estimate of a parameter’s value or bias.  

This result is accompanied by an estimate of the uncertainty in the parameter’s 

bias. 

2. The uncertainty of the measured parameter’s bias or value at time t = 0 

(immediately following measurement) is the estimated uncertainty of the 

measurement process. 

3. The measured parameter bias or value is normally distributed around the 

measurement result. 

4. The stability of the parameter is equated to the stability of its population.  This 

stability is represented by the population’s reliability model. 

5. Therefore, the uncertainty in the parameter’s bias or value grows from its 

value at t = 0 in accordance with the reliability model of the parameter’s 

population.  

 

The expressions used to compute uncertainty growth vary depending on whether the parameter 

tolerances are two-sided, single-sided upper or single-sided lower. 

 

9.2.1  Two-Sided Tolerances 

From equations (9-1) and (9-2), the reliability function for parameters with two-sided tolerance 

limits is given by 
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We define a variable  as 
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65 The drift function can be a linear or other mathematical relation.  The only restriction is that at t = 0, (t) = 0.  
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so that ( )bd u t d  .   Using substitution of variables, equation (9-4) becomes 
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where the function (.) is defined by 
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At t = 0, the reliability function is 
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where (0) is set equal to the mean or average value obtained from a sample of measurements or 

to the value obtained as a Bayesian estimate.66   

 

If (0) is set equal to a sample mean value, u0 is set equal to the combined uncertainty estimate 

for the mean value.  If (0)is set equal to a Bayesian estimate, u(0) is set equal to the uncertainty 

of the Bayesian estimate. 
 

Equations (9-5) and (9-6) are used to estimate uncertainty growth.  Since this growth consists of 

an increase in the initial uncertainty estimate, based on knowledge of the stability of the 

parameter population, it should not be influenced by the quantity (t).  Accordingly, two 

reliability functions, R0 and Rt, are defined by 
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and 
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where R0 and Rt are computed from the population reliability models at times 0 and t, 

respectively. 

 

Next, the variables 0 'u  and 'tu  are solved for iteratively using the bisection method.67  The 

                                                 
66 Bayesian analysis is discussed in Appendix E. 

67 See Chapter 9 of Press, et al., Numerical Recipes in Fortran, 2nd Ed., Cambridge University Press, 1992. 
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solutions are used to obtain u(t) from the following relation 
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u t u

u
 . (9-9) 

 

The in-tolerance probability at time t is then solved for using equation (9-5).  A “best” estimate 

for is obtained using equation (9-3).  If the function (t) is not known, the last known value of 

, namely (0), is used.  If this is the case, substituting (0) for  in equation (9-5) gives an 

estimate of the in-tolerance probability at time t > 0. 
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9.2.2  Two-Sided Symmetric Tolerances 

If the tolerance limits are symmetric, then L1 = L2 = L and equations (9-7) through (9-10) are 

applied.  In cases where 0 = 0, then equations (9-7) and (9-8) become 
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The variables 0 'u  and 'tu  are  
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and 
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Applying equation (9-9), u(t) is computed from 
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The in-tolerance probability at time t > 0 is 
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9.2.3  Single-Sided Tolerances 

In cases where tolerances are single-sided, either L1 or L2 is infinite.  For single-sided lower 

limit cases,  L1= L, L2 =  and equation (9-5) becomes 
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Equation (9-6) similarly becomes 
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For single-sided upper limit cases, L1= , L2 = L and equations (9-5) and (9-6) become 
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and 
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For both single-sided upper limit and single-sided lower limit cases, equations (9-7) and (9-8) 

become 
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The variables 0 'u  and 'tu  are  
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Applying equation (9-9), u(t) is computed from 
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Applying equation (9-10), the in-tolerance probability at time t is 
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9.3   Reliability Models 

In the uncertainty growth projection process, information about the calibration history of the 

parameter population is used to develop a reliability model.  This reliability model provides a 

means for determining how the parameter bias uncertainty grows with time since calibration. 

 

Each reliability model is defined by a mathematical equation with coefficients.  A calibration 

interval analysis program can be used to determine the reliability model that "best fits" a 

parameter’s calibration history data and to compute the corresponding model coefficients.  If a 

reliability modeling application is not accessible, then an applicable reliability model must be 

chosen based on knowledge about the stability of the subject parameter over time.   

 

Commonly used reliability models are described in the following subsections along with 

information needed to implement them.  Guidance on the selection and application of these 

reliability models can be found in NCSL RP-1 Establishment and Adjustment of Calibration 

Intervals.68  

 

9.3.1 Exponential Model   

The exponential reliability model is defined by the mathematical equation 

 

 ( ) btR t ae  (9-27) 

 

where a and b are the model coefficients.  An example plot for the exponential model is shown 

in Figure 9-4. 

 

The exponential model is useful for parameters whose failure probability is not a function of 

time since last measurement.  That is, the probability of going out-of-tolerance in the interval  

                                                 
68 NCSL, Establishment and Adjustment of Calibration Intervals, Recommended Practice RP-1, National Conference of 

Standards Laboratories, January 1996. 
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T, beginning at some time t, is the same as the probability of going out-of-tolerance in the same 

time interval T, beginning at some other time t'.  

 

 

Figure 9-4.  In-tolerance Probability versus Time – Exponential Model 

 

To implement the exponential model, either of the following must be known: 

 

1. The value of the model coefficients, a and b. 

2. The beginning of period (BOP) in-tolerance probability and the end of period 

(EOP) in-tolerance probability.  

 

9.3.2 Mixed Exponential Model   

The mixed exponential reliability model is defined by the mathematical equation 
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where a and b are the model coefficients.  An example plot for the exponential model is shown 

in Figure 9-5. 

 

The mixed exponential model is useful for parameters whose out-of-tolerance behavior depends 

on a number of constituent parameters, each of which can be represented with the exponential 

model and where the coefficient b is gamma distributed. 
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Figure 9-5.  In-tolerance Probability versus Time – Mixed Exponential Model 

 

To implement the mixed exponential model, either of the following must be known: 

 

1. The value of the model coefficients, a and b. 

2. The average over period (AOP) and EOP in-tolerance probabilities.  
 

9.3.3 Weibull Model   

The Weibull reliability model is defined by the mathematical equation 
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where a, b and c are the model coefficients.  An example plot for the Weibull model is shown in 

Figure 9-6. 

 

 

Figure 9-6.  In-tolerance Probability versus Time – Weibull Model 

 

The Weibull model is useful for parameters that go out-of-tolerance as a result of gradual wear or 

decay. 

 

To implement the Weibull model, either of the following must be known: 

 

1. The value of the model coefficients, a, b and c. 

2. The BOP, AOP and EOP in-tolerance probabilities.    

 

9.3.4 Gamma Model   

The gamma reliability model is defined by the mathematical equation 
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where a and b are the model coefficients.  An example plot for the gamma model is shown in 

Figure 9-7. 
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The gamma model is useful for parameters that go out-of-tolerance in response to some number 

of events, such as being activated and deactivated. 

 

 

Figure 9-7.  In-tolerance Probability versus Time – Gamma Model. 

 

To implement the gamma model, either of the following must be known: 

 

1. The value of the model coefficients, a and b. 

2. The BOP and EOP in-tolerance probabilities. 
 

9.3.5 Mortality Drift Model   

The mortality drift reliability model is defined by the mathematical equation 
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where a, b and c are the model coefficients.  An example plot for the mortality drift model is 

shown in Figure 9-8. 

 

 

Figure 9-8.  In-tolerance Probability versus Time – Mortality Drift Model 

 

The mortality drift model is useful for parameters that are characterized by a slowly-varying out-

of-tolerance rate. 
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To implement the mortality drift model you need to know either of the following: 

 

1. The value of the model coefficients, a, b and c. 

2. The BOP, AOP, and EOP in-tolerances. 
 

9.3.6 Warranty Model   

The warranty reliability model is defined by the mathematical equation 
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where a and b are the model coefficients.  An example plot for the warranty model is shown in 

Figure 9-9. 

 

 

Figure 9-9.  In-tolerance Probability versus Time – Warranty Model 

 

The warranty model is useful for parameters that tend to stay in-tolerance until reaching a well-

defined cut-off time, at which point, they go out-of-tolerance. 

 

To implement the warranty model, one of the following must be known: 

 

1. The value of the model coefficients, a and b. 

2. The BOP and EOP in-tolerance probabilities. 

 

9.3.7 Random Walk Model   

The random walk reliability model is defined by the mathematical equation 
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where erf is the error function69 and a and b are the model coefficients.  An example plot for the 

                                                 
69 See Chapter 7 of Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and 

Mathematical Tables, National Bureau of Standards, 1970.  This handbook is eventually to be replaced by the NIST Digital 

Library of Mathematical Functions (http://dlmf.nist.gov/) which is currently under development.  
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random walk model is shown in Figure 9-10. 

 

The random walk model is useful for parameters whose values fluctuate in a purely random way 

with respect to magnitude and direction (positive or negative). 

 

 

Figure 9-10.  In-tolerance Probability versus Time – Random Walk Model 

 

To implement the random walk model, one of the following must be known: 

 

1. The value of the model coefficients, a and b. 

2. The BOP and EOP in-tolerance probabilities. 

 

9.3.8 Restricted Random Walk Model   

The restricted random walk reliability model is defined by the mathematical equation 
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where a, b and c are the model coefficients.  An example plot for the restricted random walk 

model is shown in Figure 9-11. 

 

 

Figure 9-11.  In-tolerance Probability versus Time – Restricted Random Walk Model 
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The restricted random walk model is similar to the random walk model, except that parameter 

fluctuations are confined within a restricted region around a mean or nominal value. 

 

To implement the restricted random walk model, one of the following must be known: 

 

1. The value of the model coefficients, a, b and c. 

2. The BOP, AOP, and EOP in-tolerances. 

 

9.4     Analysis Example 

For illustrative purposes, let us consider an MTE attribute or parameter that comes from a 

population whose in-tolerance probability over time can be characterized by the gamma model 

described in section 9.3.4.  For this example, the MTE parameter is calibrated annually and the 

BOP and EOP reliabilities are 0.98 and 0.90, respectively. 

 

From equation (9-30), expressing time t in units of years, 
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From iteration, the coefficient b is found to be equal to 1.62.   

 

Now, let us assume that the MTE parameter is a 10 VDC output from a multifunction calibrator.  

We will also assume that the parameter tolerance limits are  5 V.  During calibration, the 

parameter bias uncertainty u(0) is estimated to be 1.5 V.   

 

Applying the gamma model, we can estimate the uncertainty growth 6 months (0.5 years) after 

calibration.  In this case, t = 0.5 years, bt = 1.62  0.5 = 0.81 and the in-tolerance probability is 

computed to be 
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From equation (9-15), the parameter bias uncertainty at 0.5 years since calibration is projected to 

be 
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APPENDIX A – TERMS AND DEFINITIONS 
 

It has been a goal of the authors to use consistent terminology throughout this document, even 

though the terms and definitions employed are designed to be understood across a broad 

technology base.  Where appropriate, terms and definitions have been taken from internationally 

recognized standards and guidelines in the fields of testing and calibration. 

 

Term Definition 

a priori value A value assumed before measurements are taken. 

Acceleration Error Under steady-state conditions, it is the maximum difference, at any 

measurand value within the specified range, between output 

readings taken with and without the application of specified 

constant acceleration along specified axes.  Acceleration error can 

also result from dynamic conditions encountered in vibration and 

shock environments. 

Acceleration Sensitivity See Acceleration Error. 

Accuracy Closeness of agreement between a declared or measured value of a 

quantity and its true value. 

In terms of instruments and other measuring devices, accuracy is 

defined as the conformity of an indicated value to the true value or,  

alternatively, to the value of an accepted standard. 

Adjusted Mean The value of a parameter or error source obtained by applying a 

correction factor to a nominal or mean value. 

Amplifier A device that increases the strength or amplitude of a signal. 

Analog to Digital Converter 

(ADC) 

A device that converts an analog signal to a digital representation 

of finite length. 

Analog Signal A quantity or signal that is continuous in both amplitude and time. 

Arithmetic Mean The sum of a set of values divided by the number of values in the 

set.   

Artifact A physical object or substance with measurable attributes. 

Asymmetric Distribution A probability distribution in which deviations from the population  

mode value of one sign are more probable than deviations of the 

opposite sign.  Asymmetric distributions have a non-zero 

coefficient of skewness. 

Attenuation Reduction of signal strength, intensity or value. 

Attribute A measurable characteristic, feature, or aspect of a device, object 

or substance. 

Attribute Bias A systematic deviation of an attribute’s nominal or indicated value 

from its true value. 

Average See Arithmetic Mean. 
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Term Definition 

Average-Over-Period (AOP) 

Reliability 

The in-tolerance probability for a parameter averaged over its 

calibration or test interval.  The AOP measurement reliability is 

often used to represent the in-tolerance probability of a parameter 

for a measuring device whose usage demand is random over its test 

or calibration interval. 

Bandwidth The range of frequencies that a device is capable of generating, 

handling, or accommodating; usually the range in which the 

response is within 3 dB of the maximum response. 

Beginning-of-Period (BOP) 

Reliability 

The in-tolerance probability for an MTE attribute or parameter at 

the start of its calibration or test interval.  

Between Sample Sigma The standard deviation representing the variation of values 

obtained for different samples taken on a given quantity. 

Bias A systematic discrepancy between an indicated, assume or 

declared value of a quantity and the quantity’s true value.  See also 

Attribute Bias and Operator Bias. 

Bias Offset See Offset from Nominal. 

Bias Uncertainty The uncertainty in the bias of an attribute or error source quantified 

as the standard deviation of the bias probability distribution. 

Bit A single character, 0 or 1, in a binary numeral system (base 2). The 

bit is the smallest unit of storage currently used in computing. 

Calibration A process in which the value of an MTE attribute or parameter is 

compared to a corresponding value of a measurement reference, 

resulting in (1) the determination that the parameter or attribute 

value is within its associated specification or tolerance limits, (2) a 

documented correction of the parameter or attribute value, or (3) a 

physical adjustment of the parameter or attribute value. 

Calibration Interval The scheduled interval of time between successive calibrations of 

one or more MTE parameter or attribute. 

Characteristic A distinguishing trait, feature or quality. 

Combined Error The error comprised of a combination of two or more error 

sources. 

Combined Uncertainty The uncertainty in a combined error.  

Common Mode Rejection 

(CMR) 

The common mode rejection ratio is often expressed in dB using 

the following relationship:  CMR = 20 log(CMRR). 

Common Mode Rejection 

Ratio (CMRR) 

CMRR describes the ability of a differential amplifier to reject 

interfering signals common to both positive and negative input 

terminals, and to amplify only the difference between the inputs. 

 

Normally defined as the ratio of the signal gain to the ratio of 

normal mode voltage to the common mode voltage.                                      

CMMR = Gain/(NMV/CMV). 
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Term Definition 

Common Mode Voltage 

(CMV) 

A voltage which is common to both input terminals of a 

differential device. 

Compensation Provision for a supplemental device, circuit, or special materials to 

counteract known sources of error. 

Component Uncertainty The product of the sensitivity coefficient and the standard 

uncertainty for an error source. 

Computation Error The error in a quantity obtained by computation.  Computation 

error can result from machine round-off of values obtained by 

iteration or from the use of regression models.  Sometimes applied 

to errors in tabulated physical constants. 

Computed Mean Value The average value of a sample of measurements. 

Confidence Level The probability that a set of tolerance or containment limits will 

contain a given error. 

Confidence Limits Limits that bound errors for a given source with a specified 

confidence level. 

Containment Limits Limits that are specified to contain either an attribute or parameter 

value, an attribute or parameter bias, or other measurement errors. 

Containment Probability The probability that an attribute or parameter value or error in the 

measurement of this value lies within specified containment limits. 

Correlation Analysis An analysis that determines the extent to which two random 

variables influence one another.  Typically the analysis is based on 

ordered pairs of values.  In the context of measurement uncertainty 

analysis, the random variables are error sources or error 

components. 

Correlation Coefficient A measure of the extent to which two errors are linearly related.  A 

function of the covariance between the two errors.  Correlation 

coefficients range from minus one to plus one. 

Counts The total number of divisions into which a given measurement 

range is divided.  For example, a 5-1/2 digit voltmeter has +/- 

199,999 or 399,999 total counts.  The weight of a count is given by  

Count Weight = Total Range/Total Counts. 

Covariance The expected value of the product of the deviations of two random 

variables from their respective means.  The covariance of two 

independent random variables is zero. 

Coverage Factor A factor used to express an error limit or expanded uncertainty as a 

multiple of the standard uncertainty. 

Cross-correlation The correlation between two errors for two different components 

of a multivariate analysis. 

Cumulative Distribution 

Function 

A mathematical function whose values F(x) are the probabilities 

that a random variable assumes a value less than or equal to x.  

Synonymous with Distribution Function. 
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Term Definition 

Damping The progressive reduction or suppression of the oscillation of a 

system. 

Dead Band The range through which the input varies without initiating a 

response (or indication) from the measuring device. 

Degrees of Freedom A statistical quantity that is related to the amount of information 

available about an uncertainty estimate.  The degrees of freedom 

signifies how "good" the estimate is and serves as a useful statistic 

in determining appropriate coverage factors and computing 

confidence limits and other decision variables. 

Deviation from Nominal The difference between an attribute’s or parameter's measured or 

true value and its nominal value. 

Digital to Analog Converter 

(DAC) 

A device for converting a digital (usually binary) code to a 

continuous, analog output. 

Digital Signal A quantity or signal that is represented as a series of discrete coded 

values. 

Direct Measurements Measurements in which a measuring parameter or attribute X 

directly measures the value of a subject parameter or attribute Y 

(i.e., X measures Y).  In direct measurements, the value of the 

quantity of interest is obtained directly by measurement and is not 

determined by computing its value from the measurement of other 

variables or quantities. 

Display Resolution The smallest distinguishable difference between indications of a 

displayed value. 

Distribution Function See Cumulative Distribution Function. 

Distribution Variance The mean square dispersion of a random variable about its mean 

value.  See also Variance. 

Drift A change in output over a period of time that is unrelated to input.  

Can be due to aging, temperature effects, sensor contamination, 

etc. 

Dynamic Characteristics Those characteristics of a measuring device that relate its response 

to variations of the physical input with time. 

Dynamic Range The range of physical input signals that can be converted to output 

signals by a measuring device. 

Effective Degrees of 

Freedom 

The degrees of freedom for Type B uncertainty estimates or a  

combined uncertainty estimate. 

End-of-Period (EOP) 

Reliability 

The in-tolerance probability for an MTE attribute or parameter at 

the end of its calibration or test interval. 

Equipment Parameter A specified aspect, feature or performance characteristic of a  

measuring device or artifact.  Synonymous with MTE attribute or 

parameter. 
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Term Definition 

Error The arithmetic difference between a measured or indicated value 

and the true value. 

Error Component The total error in a measured or assumed value of a component 

variable in a multivariate measurement.  For example, in the 

determination of the volume of a right circular cylinder, there are 

two error components: the error in the length measurement and the 

error in the diameter measurement.   

Error Distribution A probability distribution that describes the relative frequency of 

occurrence of values of a measurement error.  

Error Equation An expression that defines the combined error in the value of a 

quantity in terms of all relevant process or component errors. 

Error Limits Bounding values that are expected to contain the error from a 

given source with some specified level of probability or 

confidence. 

Error Model See Error Equation. 

Error Source A parameter, variable or constant that can contribute error to the 

determination of the value of a quantity.   

Error Source Coefficient See Sensitivity Coefficient. 

Error Source Correlation See Correlation Analysis. 

Error Source Uncertainty The uncertainty in a given error source. 

Estimated True Value The value of a quantity obtained by Bayesian analysis. 

Excitation An external power supply required by measuring devices to 

convert a physical input to an electrical output.  Typically, a well-

regulated dc voltage or current. 

Expanded Uncertainty A multiple of the standard uncertainty reflecting either a specified 

confidence level or coverage factor. 

False Accept Risk (FAR) The probability that a measuring equipment attribute or parameter, 

accepted by conformance testing, will be out-or-tolerance.  See 

NASA-HNBK-8739.19-4 for alternative definitions and 

applications. 

Filter A device that limits the signal bandwidth to reduce noise and other 

errors associated with sampling. 

Frequency Response The change with frequency of the output/input amplitude ratio (and 

of phase difference between output and input), for a sinusoidally 

varying input applied to a measuring device within a stated range 

of input frequencies. 

Full Scale Input (FSI) The arithmetic difference between the specified upper and lower 

input limits of a sensor, transducer or other measuring device. 

Full Scale Output (FSO) The arithmetic difference between the specified upper and lower 

output limits of a sensor, transducer or other measuring device. 
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Term Definition 

Gain The ratio of the output signal to the input signal of an amplifier. 

Gain Error The degree to which gain varies from the ideal or target gain, 

specified in percent of reading. 

Guardband A supplement specification limit used to reduce the risk of falsely 

accepting a nonconforming or out-of-compliance MTE parameter. 

Heuristic Estimate An estimate resulting from accumulated experience and/or 

technical knowledge concerning the uncertainty of an error source. 

Histogram See Sample Histogram. 

Hysteresis The lagging of an effect behind its cause, as when the change in 

magnetism of a body lags behind changes in an applied magnetic 

field. 

Hysteresis Error The maximum separation due to hysteresis between upscale-going 

and downscale-going indications of a measured value taken after 

transients have decayed. 

Independent Error Sources Error sources that are statistically independent.  See Statistical 

Independence. 

Instrument A device for measuring or producing the value of an observable 

quantity. 

In-tolerance In conformance with specified tolerance limits. 

In-tolerance Probability The probability that an MTE attribute or parameter value or the 

error in the value is contained within its specified tolerance limits 

at the time of measurement. 

Kurtosis A measure of the "peakedness” of a distribution.  For example, 

normal distributions have a peakedness value of three. 

Least Significant Bit (LSB) The smallest analog signal value that can be represented with an n-

bit code.  LSB is defined as A/2n, where A is the amplitude of the 

analog signal. 

Level of Confidence See Confidence Level. 

Linearity A characteristic that describes how a device's output over its range 

differs from a specified linear response. 

Mean Deviation The difference between a sample mean value and a nominal value. 

Mean Square Error See Variance. 

Mean Value Sample Mean:  The average value of a measurement sample.  

Population Mean:  The expectation value for measurements 

sampled from a population. 

Mean Value Correction The correction or adjustment of the computed mean value for an 

offset due to parameter bias and/or environmental factors. 

Measurand The particular quantity subject to measurement. (Taken from  

Annex B, Section B.2.9 of the GUM) 
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Term Definition 

Measurement Error The difference between the measured value of a quantity and its 

true value. 

Measurement Process  

Errors 

Errors resulting from the measurement process (e.g., measurement 

reference bias, repeatability, resolution error, operator bias, 

environmental factors, etc).   

Measurement Process 

Uncertainty 

The uncertainty in a measurement process error.  The standard 

deviation of the probability distribution of a measurement process 

error. 

Measurement Reference See Reference Standard. 

Measurement Reliability The probability that an MTE attribute or parameter is in 

conformance with performance specifications.  At the measuring 

device or instrument level, it is the probablity that all attributes or 

parameters are in conformance or in-tolerance. 

Measurement Uncertainty The lack of knowledge of the sign and magnitude of measurement 

error.   

Measurement Units The units, such as volts, millivolts, etc., in which a measurement or 

measurement error is expressed. 

Measuring Device See Measuring and Test Equipment. 

Measuring and Test 

Equipment (MTE) 

A system or device used to measure the value of a quantity or test 

for conformance to specifications. 

Measuring Parameter The characteristic or feature of a measuring device that is used to 

obtain information that quantifies the value of the subject or unit-

under-test parameter. 

Median Value (1) The value that divides an ordered sample of data in two equal 

portions.  (2) The value for which the distribution function of a 

random variable is equal to one-half.   

Mode Value The value of a parameter most often encounter or measured.  

Sometimes synonymous with the nominal value or design value of 

a parameter. 

Module Error Sources Sources of error that accompany the conversion of module input to 

module output. 

Module Input Uncertainty The uncertainty in a module's input error expressed as the 

uncertainty in the output of the preceding module. 

Module Output Equation The equation that expresses the output from a module in terms of 

its input.  The equation is characterized by parameters that 

represent the physical processes that participate in the conversion 

of module input to module output. 

Module Output Uncertainty The combined uncertainty in the output of a given module of a 

measurement system. 
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Term Definition 

Multiplexer A multi-channel device designed to accept input signals from a 

number of sensors or measuring equipment and share downstream 

signal conditioning components. 

Multivariate Measurements Measurements in which the value of a subject parameter is a 

computed quantity based on measurements of two or more 

attributes or parameters. 

Noise Signals originating from sources other than those intended to be 

measured.  Noise may arise from several sources, can be random 

or periodic, and often varies in intensity. 

Nominal Value The designated or published value of an artifact, attribute or 

parameter.  It may also sometimes refer to the distribution mode 

value of an artifact, attribute or parameter. 

Nonlinearity See Linearity. 

Normal Mode Voltage The potential difference that exists between pairs of power (or 

signal) conductors. 

Offset A non-zero output of a device for a zero input. 

Operating Conditions The environmental conditions, such as pressure, temperature and 

humidity ranges that the measuring device is rated to operate. 

Operator Bias The systematic error due to the perception or influence of a human 

operator or other agency. 

Output Device See Readout Device. 

Parameter A characteristic of a device, process or function.  See also 

Equipment Parameter. 

Parameter Bias A systematic deviation of a parameter’s nominal or indicated value  

from its true value. 

Population The total set of possible values for a random variable. 

Population Mean The expectation value of a random variable described by a 

probability distribution. 

Precision The number of places past the decimal point in which the value of 

a quantity can be expressed.  Although higher precision does not 

necessarily mean higher accuracy, the lack of precision in a 

measurement is a source of measurement error. 

Probability The likelihood of the occurrence of a specific event or value from 

a population of events or values. 

Probability Density  

Function (pdf) 

A mathematical function that describes the relative frequency of 

occurrence of the values of a random variable. 

Quantization The sub-division of the range of a reading into a finite number of 

steps, not necessary equal, each of which is assigned a value.  

Particularly applicable to analog to digital and digital to analog 

conversion processes. 
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Term Definition 

Quantization Error Error due to the granularity of resolution in quantizing a sampled 

signal. Contained within +/- 1/2 LSB (least significant bit) limits. 

Random Error See Repeatability. 

Range An interval of values for which specified tolerances apply.  In a 

calibration or test procedure, a setting or designation for the 

measurement of a set of specific points. 

Rated Output (RO) See Full Scale Output. 

Readout Device A device that converts a signal to a series of numbers on a digital 

display, the position of a pointer on a meter scale, tracing on 

recorder paper or graphic display on a screen. 

Reference Standard An artifact used as a measurement reference whose value and 

uncertainty have been determined by calibration and documented. 

Reliability Model A mathematical function relating the in-tolerance probability of 

one or more MTE attributes or parameters and the time between 

calibration.  Used to project uncertainty growth over time. 

Repeatability The error that manifests itself in the variation of the results of 

successive measurements of a quantity carried out under the same 

measurement conditions and procedure during a measurement 

session.  Often referred to as Random Error. 

Reproducibility The closeness of the agreement between the results of 

measurements of the value of a quantity carried out under different 

measurement conditions.  The different conditions may include: 

principle of measurement, method of measurement, observer, 

measuring instrument(s), reference standard, location, conditions 

of use, time. 

Resolution The smallest discernible value indicated by a measuring device. 

Resolution Error The error due to the finiteness of the precision of a measurement. 

Response Time The time required for a sensor output to change from its previous 

state to a final settled value. 

Sample A collection of values drawn from a population from which 

inferences about the population are made. 

Sample Histogram A bar chart showing the relative frequency of occurrence of 

sampled values. 

Sample Mean The arithmetic average of sampled values. 

Sample Size The number of values that comprise a sample. 

Sensitivity The ratio between a change in the electrical output signal to a 

small change in the physical input of a sensor or transducer.  The 

derivative of the transfer function with respect to the physical 

input. 
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Term Definition 

Sensitivity Coefficient A coefficient that weights the contribution of an error source to a 

combined error. 

Sensor Any of various devices designed to detect, measure or record 

physical phenomena. 

Settling Time The time interval between the application of an input and the time 

when the output is within an acceptable band of the final steady-

state value. 

Signal Conditioner A device that provides amplification, filtering, impedance 

transformation, linearization, analog to digital conversion, digital 

to analog conversion, excitation or other signal modification. 

Skewness A measure of the asymmetry of a probability distribution.  A 

symmetric distribution has zero skewness. 

Span See Dynamic Range. 

Specification A numerical value or range of values that bound the performance 

of an MTE parameter or attribute. 

Stability The ability of a measuring device to give constant output for a 

constant input over a period of time. 

Standard Deviation The square root of the variance of a sample or population of 

values.  A quantity that represents the spread of values about a 

mean value.  In statistics, the second moment of a distribution. 

Standard Uncertainty The standard deviation of an error distribution. 

Static Performance 

Characteristic 

An indication of how the measuring equipment or device responds 

to a steady-state input at one particular time. 

Statistical Independence A property of two or more random variables such that their joint 

probability density function is the product of their individual 

probability density functions.  Two error sources are statistically 

independent if one does not exert an influence on the other or if 

both are not consistently influenced by a common agency.   

Stress Response Error The error or bias in a parameter value induced by response to 

applied stress. 

Student’s t-statistic Typically expressed as t,, it denotes the value for which the 

distribution function for a t-distribution with  degrees of freedom 

is equal to 1 – ..  A multiplier used to express an error limit or 

expanded uncertainty as a multiple of the standard uncertainty. 

Subject Parameter An attribute or quantity whose value we seek to obtain from a 

measurement or set of measurements. 

Symmetric Distribution A probability distribution of random variables that are equally 

likely to be found above or below a mean value. 

System Equation A mathematical expression that defines the value of a quantity in 

terms of its constituent variables or components. 
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Term Definition 

System Module An intermediate stage of a system that transforms an input quantity 

into an output quantity according to a module output equation. 

System Output Uncertainty The total uncertainty in the output of a measurement system. 

t Distribution A symmetric, continuous distribution characterized by the degrees 

of freedom parameter.  Used to compute confidence limits for 

normally distributed variables whose estimated standard deviation 

is based on a finite degrees of freedom.  Also referred to as the 

Student’s t-distribution. 

Temperature Coefficient A quantitative measure of the effects of a variation in operating temperature on a 

device's zero offset and sensitivity. 

Temperature Effects The effect of temperature on the sensitivity and zero output of a 

measuring device. 

Thermal Drift The change in output of a measuring device per degree of 

temperature change, given all other operating conditions are held 

constant. 

Thermal Sensitivity Shift The variation in the sensitivity of a measuring device as a function 

of temperature. 

Thermal Transient Response A change in the output from a measuring device generated by 

temperature change.   

Thermal Zero Shift The shift in the zero output of a measuring device due to change in 

temperature. 

Threshold The smallest change in the physical input that will result in a 

measurable change in transducer output. 

Time Constant The time required to complete 63.2% of the total rise or decay after 

a step change of input. It is derived from the exponential response 

e-t/ where t is time and  is the time constant. 

Tolerance Limits Typically, engineering tolerances that define the maximum and 

minimum values for a product to work correctly.  These tolerances 

bound a region that contains a certain proportion of the total 

population with a specified probability or confidence. 

Total Module Uncertainty See Module Output Uncertainty. 

Total Uncertainty The standard deviation of the probability distribution of the total 

combined error in the value of a quantity obtained by 

measurement. 

Total System Uncertainty See System Output Uncertainty. 

Transducer A device that converts an input signal from one form into an 

output signal of another form. 

Transfer Function A mathematical equation that shows the functional relationship 

between the physical input signal and the electrical output signal. 
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Term Definition 

Transient Response The response of a measuring device to a step-change in the 

physical input.  See also Response Time and Time Constant. 

Transverse Sensitivity An output caused by motion, which is not in the same axis that the 

device is designed to measure.  Defined in terms of output for 

cross-axis input along the orthogonal axes. 

True Value The value that would be obtained by a perfect measurement.  True 

values are by nature indeterminate. 

Type A Estimates Uncertainty estimates obtained by statistical analysis of a sample 

of data. 

Type B Estimates Uncertainty estimates obtained by heuristic means in the absence 

of a sample of data. 

Uncertainty See Standard Uncertainty. 

Uncertainty Component The uncertainty in an error component. 

Uncertainty in the Mean 

Value 

The standard deviation of the distribution of mean values obtained 

from multiple sample sets for a given measured quantity.  

Estimated by the standard deviation of a single sample set divided 

by the square root of the sample size. 

Uncertainty Growth The increase in the uncertainty in the value or bias of an MTE 

parameter or attribute over the time elapsed since measurement. 

Variance (1) Population:  The expectation value for the square of the 

difference between the value of a variable and the population 

mean.  (2) Sample:  A measure of the spread of a sample equal to 

the sum of the squared observed deviations from the sample mean 

divided by the degrees of freedom for the sample.  Also referred to 

as the mean square error. 

Vibration Sensitivity The maximum change in output, at any physical input value within 

the specified range, when vibration levels of specified amplitude 

and range of frequencies are applied to a transducer or other 

measuring device along specified axes. 

Warm-up Time The time it takes a circuit to stabilize after the application of 

power. 

Within Sample Sigma An indicator of the variation within samples. 

Zero Balance See Offset. 

Zero Drift See Zero Shift. 

Zero Offset See Offset. 

Zero Shift A change in the output of a measuring device, for a zero input, 

over a specified period of time. 
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APPENDIX B – PROBABILITY DISTRIBUTIONS 
 

A probability distribution is a relationship between the value of a variable and its probability of 

occurrence.  Such distributions may be characterized by different degrees of spreading or may 

even exhibit different shapes.  Probability distributions are usually expressed as a mathematical 

function f() called the probability density function, or pdf.   

 

Axiom 1 tells us that measurement errors are random variables that follow probability 

distributions.  For certain kinds of error, such as repeatability or random error, the validity of this 

assertion is easily seen.  Conversely, for other kinds of error, such as parameter bias and operator 

bias, the validity of this assertion may not be so readily apparent. 

 

It is important to bear in mind, however, that, while a particular error may have a systematic 

value that persists from measurement to measurement, it nevertheless comes from some 

distribution of like errors that possess a probability of occurrence.  Consequently, whether a 

particular error is random or systematic, it can be regarded as coming from a distribution of 

errors that can be described statistically.   

 

Once the probability distribution for a measurement error has been characterized, the uncertainty 

in this error can be computed.  The uncertainty for a given error source, , is equal to the square 

root of the distribution variance. 

 

 var( )u   (B-1) 

where  

 

  
2

var( ) ( )f d    




   (B-2) 

 

For symmetric error distributions, the population mean  is taken to be zero.  In these cases, 

equation (B-2) reduces to 

 

 2var( ) ( )f d   




   (B-3)  

 

This appendix describes probability distributions that can be used to characterize measurement 

errors.  Once the probability distribution for a measurement error has been characterized, the 

uncertainty in this error is computed as the square root of the distribution variance.  Because the 

Uniform distribution is often incorrectly selected as a simple means of obtaining an uncertainty 

estimate, Section B.12 is included to discuss its proper application. 

 

B.1  Normal Distribution    

When obtaining a Type A uncertainty estimate, we compute a standard deviation from a sample 

of values.  For example, the uncertainty due to repeatability is estimated by computing the 

standard deviation for a sample of repeated measurements of a given value.  The sample standard 

deviation is an estimate of the standard deviation for the population from which the sample was 

drawn.  Except in rare cases, we assume that this population follows the normal distribution. 
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Figure B-1.  Normal Distribution 

 

Why do we assume a normal distribution?  The primary reason is because this is the distribution 

that either represents or approximates what we frequently see in the physical universe.  It can be 

derived from the laws of physics for such phenomena as the diffusion of gases and is applicable 

to instrument parameters subject to random stresses of usage and handling.  It is also often 

applicable to equipment parameters emerging from manufacturing processes. 

 

In addition, the normal distribution is often assumed applicable for a total error composed of 

constituent errors.  This assumption results from the central limit theorem, which demonstrates 

that, even though the individual constituent errors may not be normally distributed, the combined 

error is approximately so. 

 

The probability density function for the normal distribution is given in equation (B-4).  The 

population mean is equal to zero and the variable  is the population standard deviation. 
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In applying the normal distribution, an uncertainty estimate is obtained from containment limits 

and a containment probability.   

 

For example, if ± a represents the known containment limits and p represents the associated 

containment probability, then an uncertainty estimate can be obtained from equation (B-5). 
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The inverse normal distribution function, -1(), can be found in statistics texts and in most 

spreadsheet programs.  If only a single containment limit is applicable, such as with single-sided 

tolerance limits, the appropriate expression is given in equation (B-6). 
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Note:  The use of the normal distribution is appropriate in cases where the above 

considerations apply and the limits and probability are at least approximately 

known.  The extent to which this knowledge is approximate determines the 

degrees of freedom of the uncertainty estimate.  The degrees of freedom and the 

uncertainty estimate can be used in conjunction with the Student's t distribution to 

compute confidence limits.  The Student’s t distribution is discussed in Section 

B.10. 

  

B.2 Lognormal Distribution   

The lognormal distribution can often be used to estimate the uncertainty in equipment parameter 

bias in cases where the tolerance limits are asymmetric.  This distribution is also used in cases 

where a physical limit is present that lies close enough to the nominal or mode value to skew the 

probability density function in such a way that the normal distribution is not applicable. 

 

A typical right-handed lognormal distribution with physical limit q, mode M =  and two-sided, 

asymmetric tolerance limits - a1 and a2 is shown in Figure B-2. 

 

 

Figure B-2.  Right-handed Lognormal Distribution   

 

The probability density function for the lognormal distribution is given in equation (B-7).  The 

variable q is a physical limit for , the variable m is the population median and the variable  is 

the shape parameter.  The quantities m, q and  are obtained by numerical iteration, given 

containment limits and an associated containment probability. 
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The lognormal distribution statistics are defined in equations (B-8) through (B-11). 

 

 Mode:   M = 0 (B-8) 

 

 Median:   
2
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 Mean:   
2 / 2( )m q e q     (B-10) 

 

0- q

f()



-a1 a2



 

151 

 Variance:   
2 22 2var( ) ( ) ( 1)m q e e       (B-11) 

 

The uncertainty is the square root of the variance.  
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B.3 Exponential Distribution   

Sometimes cases are encountered where there exists a definable upper or lower physical limit to  

errors along with a single-sided upper or lower tolerance limit.  If the physical limit and the 

mode value are equal, then the lognormal distribution suffers from a mathematical discontinuity 

that makes it inappropriate as the distribution of choice.  To handle such cases, the exponential 

distribution is employed.  A plot of a right-handed exponential distribution is shown in Figure  

B-3 where the mode   = 0 is less than the tolerance limit a. 

 

 

Figure B-3.  Right-handed Exponential Distribution 

 

The probability density function for the exponential distribution is given in equation (B-13). 
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The absolute value for  is used to accommodate cases where the tolerance limit a is less than 

zero, as depicted in Figure B-4. 

 

 

Figure B-4.  Left-Handed Exponential Distribution 
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Employing the probability density function for a right-handed exponential distribution, the 

variance is   
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The distribution mean is computed to be 
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Note:  The mean value for a left-handed exponential distribution is 
1




  . 

 

Substituting equation (B-15) into equation (B-14), the variance of the right-handed distribution is 

computed to be 
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Note:  The variance of a left-handed exponential distribution is equivalent to the 

variance of a right-handed exponential distribution. 
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The uncertainty estimate for the exponential distribution is obtained by taking the square root of 

the variance.   
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B.4 Quadratic Distribution   

The quadratic distribution, shown in Figure B-5, is continuous between minimum bounding 

limits, does not exhibit unrealistic linear behavior and satisfies the need for a central tendency.   

 

 

Figure B-5.  Quadratic Distribution 

 

For containment limits ±L and associated containment probability p, the minimum bounding 

limits ±a are obtained from equation (B-18). 
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The quadratic distribution is defined by the probability density function given in equation (B-19). 
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The quadratic distribution variance is 
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The uncertainty is the square root of the variance. 
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B.5 Cosine Distribution   

While the quadratic distribution is continuous within minimum bounding limits, it is 

discontinuous at the limits.  And, even though the quadratic distribution has wider applicability 

than either the triangular or uniform distribution, this feature nevertheless diminishes its physical 

validity.  As shown in Figure B-6, the cosine distribution overcomes this shortcoming, exhibits a 

central tendency and can be determined from bounding limits.   

 

 

Figure B-6.  Cosine Distribution 

 

Given containment limits ±L and associated containment probability p, the minimum bounding 

limits  a are computed by solving equation (B-22) using a numerical iterative method. 
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The iterative algorithm is given in equations (B-23) through (B-25). 
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where ai is the value obtained at the ith iteration. 

 

The probability density function for the cosine distribution is given in equation (B-26). 
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The cosine distribution variance is 
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The uncertainty is the square root of the variance. 
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Note:   The value of u for the cosine distribution translates to roughly 63% of the 

value obtained using the uniform distribution. 

 

B.6 U-shaped Distribution   

The U-shaped distribution shown in Figure B-7 applies to sinusoidal RF signals incident on a 

load.  Another application for this distribution would be environmental temperature control in a 

laboratory or test chamber.   

 

 

Figure B-7.  U-Shaped Distribution 

 

If containment limits ±L and containment probability p are known, the minimum bounding limits 

± a can be computed from equation (B-29).  
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The probability density function for the U-shaped distribution is given in equation (B-30). 
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The U-shaped distribution variance is 
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The uncertainty is the square root of the variance. 
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Note:   The value of u for the U-shaped distribution translates to roughly 122% 

of the value obtained using the uniform distribution. 

 

B.7 Uniform (Rectangular) Distribution   

The uniform distribution has minimum bounding limits and an equal probability of obtaining a 

value within these limits.  There are two types of uniform distribution.   

 

 The “round-off” uniform distribution  

 The “truncation” uniform distribution  

 

B.7.1  Round-off Uniform Distribution 

The round-off uniform distribution describes errors that fall within symmetric minimum 

bounding limits ±a centered at zero, as shown in Figure B-8.  The probability of lying between 

the minimum bounding limits is constant and the probability of lying outside of them is zero.   

 

The probability density function for the round-off uniform distribution is 
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Figure B-8.  Round-off Uniform Distribution 

 

The round-off uniform distribution variance is 
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The uncertainty is computed by taking the square root of the variance. 
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B.7.2  Truncation Uniform Distribution 

The “truncation” uniform distribution describes errors that are distributed between the limits 0 

and a, as shown in Figure B-9.  The probability density function for the truncation uniform 

distribution is given in equation (B-36). 
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Figure B-9.  Truncation Uniform Distribution 
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The truncation uniform distribution variance is computed to be 
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The uncertainty is computed by taking the square root of the variance. 
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B.8  Triangular Distribution   

The triangular distribution, shown in Figure B-10, is the simplest distribution possible for use in 

cases where there are minimum containment limits and there is a central tendency for values of 

the error.     
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Figure B-10.  Triangular Distribution 

 

The triangular distribution sometimes applies to parameter values immediately following test or 

calibration and to the sum of two uniformly distributed errors that have the same mean value and 

minimum bounding limits.   

 

Apart from representing post-test distributions under certain restricted conditions, the triangular 

distribution has limited applicability.  While it does not suffer from the constant probability 

criterion of the uniform distribution, it nevertheless displays abrupt transitions at the bounding 

limits and at the zero point, which are physically unrealistic in most instances.  

 

The probability density function for the triangular distribution is given in equation (B-39). 
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The triangular distribution variance is computed to be 
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The uncertainty is computed by taking the square root of the variance. 
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B.9  Trapezoidal Distribution    

If two errors x and y are uniformly distributed with bounding values of a and b, where b a, 

then their sum  

 

  = x + y 

 

follows a trapezoidal distribution with discontinuities at c = (b  a) and d = (b + a), as 

shown in Figure (B-11). 

 

 

Figure B-11.  Trapezoidal Distribution 

 

The probability of obtaining a value of  is uniform between the limits c, declining linearly to 

zero at the minimum bounding limits d.  

 

When applying the trapezoidal distribution, it may be difficult to establish the minimum 

bounding limits d.  One approach would be to specify tolerance limits L, with an associate in-

tolerance probability p, and uniform probability limits c.  This information could then be used 

to solve for d.  If this approach is used, there are two possible cases. 

 

Case 1: 

If L  c, then the in-tolerance probability is 
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Case 2: 

If c < L < d, then the in-tolerance probability is 
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and d is obtained by solving equation (B-45). 
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Note that, when p = 1, d = L. 

 

The probability density function for the trapezoidal distribution is  
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The trapezoidal distribution variance is 
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The uncertainty is the square root of the variance. 
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B.10  Student’s t Distribution   

If the underlying distribution is normal, and a Type A estimate and degrees of freedom are 

available, confidence limits for measurement errors may be obtained using the Student's t 

distribution.   

  

 

Figure B-12.  Student's t Distribution 

 

The probability density function for the Student's t distribution is given in equation  

(B-49).  The variable  is the degrees of freedom and the parameter (.) is the gamma function.  
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The degrees of freedom quantifies the amount of knowledge used in estimating uncertainty.  For 

Type A estimates the degrees of freedom is simply the sample size, n, minus one, as shown in 

equation (B-50). 

  

  = n - 1 (B-50) 

 

The knowledge used in estimating uncertainty is incomplete if containment limits ± a for the 

Student's t distribution are approximate and the containment probability p is estimated from 

recollected experience (i.e., Type B).  Therefore, the degrees of freedom associated with a Type 

B estimate is not infinite.   

 

If the degrees of freedom are finite but unknown, the uncertainty estimate cannot be rigorously 

used to develop confidence limits, perform statistical tests or make decisions.  This limitation has 

often precluded the use of Type B estimates as statistical quantities and has led to the misguided 

practice of using fixed coverage factors.   

 

f()
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Fortunately, the GUM provides an expression for obtaining the approximate degrees of freedom 

for Type B estimates.  However, the expression involves the use of the variance in the 

uncertainty estimate, and a method for obtaining this variance has been lacking until recently.70   

 

The procedure is to first estimate the uncertainty for the normal distribution and then estimate the 

degrees of freedom from the following expression  
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where the variables L and p represent "give or take" values for the containment limits and 

containment probability, respectively, and  
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Once the degrees of freedom has been obtained, the Type B estimate can be combined with other 

estimates and the degrees of freedom for the combined uncertainty can be determined using the 

Welch-Satterthwaite formula.  If the underlying distribution for the combined estimate is normal, 

the Student’s t distribution can be used to develop confidence limits and perform statistical tests.  

 

For confidence or containment limits ±L and corresponding degrees of freedom, the uncertainty 

can be estimated from 
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L
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where t/2, is the Student's t statistic,  = 1 - p, and p is the containment probability or 

confidence level.  The Student's t statistic for a given set of /2 and  values can be obtained 

from published tables.71    

 

B.11 The Utility Distribution 

In some cases, one might expect the probability of finding a measurement error to be essentially 

uniform over a range of values, tapering off gradually to zero at the distribution limits.  The 

utility distribution, shown in Figure B-13, represents this behavior.  This distribution gets its 

name because of its application to building utility functions in cost analysis applications. 

 

                                                 
70 Type B degrees of freedom estimation is discussed in Appendix D. 
71 See for example, CRC Standard Mathematical Tables, 28th Edition, CRC Press Inc., 2000. 
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Figure B-13.  Utility Distribution 

 

The utility distribution is very similar to the trapezoidal distribution, including the difficulty 

establishing the limits c and d.  As with the trapezoidal distribution, the approach is to specify 

tolerance limits L, with an associate in-tolerance probability p, and uniform probability limits.  

This information could then be used to solve for d.  There are two cases. 

 

Case 1: 

If L  c, then the in-tolerance probability is 
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and 
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Case 2: 

If c < L < d, then the in-tolerance probability is 
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The probability density function for the utility distribution is 
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The utility distribution variance is 
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Substituting the variable 
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into equation (B-58), the distribution variance becomes 
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where I1, I2 and I3 are defined in equations (B-60) through (B-62). 
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Substituting equations (B-60) through (B-62) into equation (B-59), the utility distribution 

variance is computed to be  
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Rearranging equation (B-63),  
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The uncertainty is the square root of the variance.   
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B.12 Applying the Uniform Distribution   

Unfortunately, the uniform distribution is often incorrectly selected for Type B estimates because 

an uncertainty is simply computed by dividing containment limits by the square root of three.  

Advocates of the adhoc use of the uniform distribution have asserted that this practice is 

recommended in the GUM.   

 

Basic selection criteria are provided herein, including specific cases where the uniform 

distribution is applicable.  The two common fallacies for universal or adhoc application of the 

uniform distribution are also dispelled.   

 

B.12.1 Criteria for Selecting the Uniform Distribution    

The use of the uniform distribution is appropriate under a limited set of conditions.  These 

conditions are summarized by three criteria.  

 

1. The minimum bounding limits must be known for the distribution.  This is the 

minimum limits criterion.   

 

2. There must be a 100% probability of finding values between these limits.  This is the 

100% containment criterion.   

 

3. There must be equal probability of obtaining values between the minimum bounding 

limits.  This is the equal probability criterion. 

 

Minimum Limits Criterion   

It is vital that the limits established for the uniform distribution are the minimum bounding 

limits.  For instance, if the limits ±a bound the error distribution, then so do the limits ±2a, ±3a, 

and so on.  Since the uncertainty estimate for the uniform distribution is obtained by dividing the 
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bounding limit by the square root of three, using a value for the limit that is not the minimum 

bounding value will obviously result in an invalid uncertainty estimate. 

 

This alone makes the application of the uniform distribution questionable in estimating bias 

uncertainty from such quantities as tolerance limits.  It may be that out-of-tolerances have never 

been observed for a particular parameter (100% containment), but it is unknown whether the 

tolerances are minimum bounding limits.   

 

A difficulty often encountered when attempting to apply minimum bounding limits is that such 

limits can rarely be established on physical grounds.  This is especially true when using  

tolerance limits for a given MTE parameter.   

 

Some years ago, a study was conducted involving a voltage reference that showed that values for 

one parameter were normally distributed with a standard deviation that was approximately 1/10 

of the tolerance limit.  With 10-sigma limits, it is unlikely that any out-of-tolerances would be 

observed.  However, if the uniform distribution were used to estimate the bias uncertainty for 

this item, based on tolerance limits, the uncertainty estimate would be nearly six times larger 

than would be appropriate.  Some might claim that this is acceptable, since the estimate can be 

considered a conservative one.  That may be.  However, it is also a unrealistic estimate.   

 

100% Containment Criterion   

By definition, the establishment of minimum bounding limits implies the establishment of 100% 

containment.  It should be said however, that an uncertainty estimate may still be obtained for the 

uniform distribution if a containment probability less that 100% is applied.  For instance, 

suppose the containment limits are given as ±L and the containment probability is stated as being 

equal to some value p between zero and one.  Then, if the uniform probability criterion is met, 

the minimum bounding limits of the distribution are given by 

 

,
L

a L a
p

 
 

 

If the equal probability criterion is not met, however, the uniform distribution would not be 

applicable, and we should turn to other distributions.   

 

Equal Probability Criterion   

As discussed above, establishing minimum bounding limits can be a challenging prospect.  It is 

harder still to find real-world measurement error distributions that demonstrate an equal 

probability of occurrence between two limits and zero probability of occurrence outside these 

limits.  Except in very limited instances, such as those discussed in Section B.12.2, assuming 

equal probability is not physically realistic.   

 

B.12.2 Cases where the Uniform Distribution is Applicable   

Digital Resolution Uncertainty   

We sometimes need to estimate the uncertainty due to the resolution of a digital readout.  For 

instance, a three-digit readout might indicate 12.015 V.  If the device employs the standard 

round-off practice, we know that the displayed number is derived from a sensed value that lies 

between 12.0145 V and 12.0155 V.  We also can assert to a very high degree of validity that the 

value has an equal probability of lying anywhere between these two numbers.  In this case, the 
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use of the uniform distribution is appropriate, and the resolution uncertainty is  

 

0.0005 V
0.00029 V

3res
u   . 

 

RF Phase Angle   

RF power incident on a load may be delivered to the load with a phase angle  between -  and 

.  Unless there is a compelling reason to believe otherwise, the probability of occurrence 

between these limits is equal (i.e., uniform).  This yields a phase angle uncertainty estimate of 

 

1.814
3

u


  . 

 

Note:   Given the above, if we assume that the amplitude of the signal is 

sinusoidal, the distribution for incident voltage is the U-shaped distribution. 

 

Quantization Error   

When an analog signal is digitized, the sampled signal points are quantized in multiples of a 

discrete step size.  The potential drop (or lack of a potential drop) sensed across each element of 

an analog to digital converter (ADC) sensing network produces either a "1" or "0" to the 

converter.  This response constitutes a "bit" in the binary code that represents the sampled value.  

 

Even if no errors were present in sampling and sensing the input signal, errors would still be 

introduced by the discrete nature of the encoding process.  Suppose, for example, that the full 

scale signal level (dynamic range) of the ADC is Vm volts.  If n bits are used in the encoding 

process, then the voltage can be resolved into 2n discrete steps, each of size Vm/2n.   

 

The containment limit associated with each step is one-half the value of the magnitude of the 

step.  Consequently, the containment limits for quantization error are  Vm/2n+1.  The uncertainty 

due to quantization error is obtained from these containment limits and from the assumption that 

there is equal probability of occurrence between these limits. 

 
1/ 2
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3quant

n
mV

u



  

 

B.12.3 Incorrect Application of the Uniform Distribution   

The indiscriminate use of the uniform distribution to obtain Type B uncertainty estimates is a 

practice that has been gaining ground over the past few years.  The two main reasons for this are 

 

1. Ease of use. 

2. Recommended in the GUM. 

 

Ease of Use   

Applying the uniform distribution makes it easy to obtain an uncertainty estimate.  If the 

minimum bounding limits of the distribution are known, the uncertainty estimate, u, is simply 

computed from dividing these limits by the square root of three. 
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It should be said that the "ease of use" advantage has been promoted by individuals who are 

ignorant of methods of obtaining uncertainty estimates for more appropriate distributions and by 

others who are simply looking for a quick solution.   

 

In fairness to the latter group, they sometimes assert that the lack of specificity of information 

required to use other distributions makes for crude uncertainty estimates anyway, so why not get 

your crude estimate by intentionally using an inappropriate distribution?   

 

Since the introduction of the GUM, methods have been developed to systematically and 

rigorously apply distributions that are physically realistic.  

 

Recommended in the GUM   

It has been asserted by some that the use of the uniform distribution is recommended in the 

GUM.  In fact, most of the methodology of the GUM is based on the assumption that the 

underlying error distribution is normal.  For clarification on this issue, the reader is referred to 

Section 4.3 of the GUM. 

 

Another source of confusion is that some of the examples in the GUM apply the uniform 

distribution in situations that appear to be incompatible with its use.  It is reasonable to suppose 

that much of this is due to the fact that rigorous Type B estimation methods and tools were not 

available at the time the GUM was published, and the uniform distribution was an "easy out."   

 

The philosophy of indiscriminately using the uniform distribution to compute Type B uncertainty 

estimates undermines efforts to estimate uncertainties that can be used to perform statistical tests, 

evaluate measurement decision risks, manage calibration intervals, develop meaningful 

tolerances and compute viable confidence limits.   
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APPENDIX C – STATISTICAL SAMPLE ANALYSIS 
 

In the real world, it is seldom practical or economical to obtain all possible values of  a 

population.  Instead, a data sample is drawn from a population of interest and sample statistics 

are used to make inferences about the characteristics of the population.  Three commonly used 

data sampling formats (sampled values, sampled cells and sampled mean values) and their 

relevant statistics are discussed herein.  

 

In taking samples of measurement data, we collect the results of some number of repeat 

measurements.  For the sample statistics to be meaningful, we must ensure that each 

measurement is both independent and representative.  Measurements are independent if, in 

measuring one value, we do not affect the measurement of another value.  Measurements are 

representative if they are typical of the kind of measurements we are interested in obtaining.72 

We must also ensure that the data are sampled randomly.  In this regard, we strive to collect the 

data “as it comes” without any screening that may skew the results. 

 

When making repeat measurements, it is also important to include all sampled values, provided 

they are independent and representative – not just the ones that appeal to us.  However, this does 

not mean that clearly anomalous values should be included.  Methods for statistically identifying 

outliers from samples of measurement data are presented in Section C.4.   

 

The normal distribution is often assumed to be the underlying distribution for randomly sampled 

data.  However, this assumption may not apply to all measurement sampling scenarios.  Section 

C.5 discusses normality testing to determine if sampled data can be assumed to be normally 

distributed. 

 

A question that commonly arises when making repeat measurements is “what is considered to be 

a sufficient sample size?”  Section C.6 addresses the effect of sample size on computed statistics 

and presents a method that can be used to determine if the size of a sample of data is sufficient 

for obtaining an estimated sample mean that differs from the true (population) mean by less than 

or equal to some specified amount. 

 

C.1 Sampled Values   

In this format, sampled values consist of individual repeat measurements.  The data can be 

expressed as measured values or deviations from a nominal or specified value.  

 

The sample mean, x , is obtained by taking the average of the sampled values.  The average 

value is computed by summing the sampled values and dividing them by the sample size, n. 

 

  1 2
1

1 1
...

n

n i
i

x x x x x
n n 

       (C-1) 

 

The sample standard deviation provides an estimate of how much the population is spread 

about the mean value.  The sample standard deviation, sx, is computed by taking the square root 

of the sum of the squares of sampled deviations from the mean divided by the sample size minus 

one. 

                                                 
72 i.e., if they are obtained from the population of interest. 
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  
2

1

1

1

n

x i
i

s x x
n 

 


  (C-2) 

 

The value n-1 is the degrees of freedom for the estimate, which signifies the number of 

independent pieces of information that go into computing the estimate.  All other things being 

equal, the greater the degrees of freedom, the closer the sample estimate will be to its population 

counterpart.  The degrees of freedom for an uncertainty estimate is useful for establishing 

confidence limits and other decision variables.  

 

The standard deviation in the mean value, s x , is equal to the standard deviation sx divided by the 

square root of the sample size. 

 

 x
x

s
s

n
  (C-3) 

 

C.1.1  Example 1 – AC Voltage Measurements 

In this example, measurements are made to evaluate the repeatability of the AC voltage coming 

out of a wall socket.  We will compute the mean value and standard deviation for the voltage 

data listed below.  

 

Measurement AC Voltage 

1 115.5 

2 116.0 

3 116.5 

4 114.3 

5 115.3 

6 117.1 

7 115.2 

8 116.2 

9 115.2 

10 115.5 

11 116.0 

12 115.8 

13 115.5 

14 116.5 

15 117.2 

 

The sample mean is computed to be 

 

ac

ac
ac

115.5 116.0 116.5 114.3 115.3 117.1 115.2 116.21
V

115.2 115.5 116.0 115.8 115.5 116.5 117.215

1737.8 V
115.9 V

15

V
       

  
       

 

 

 

and the differences between the measured values and the mean value are 
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1 ac

2 ac

3 ac

4 ac

5 ac

6 ac

7 ac

8 ac

115.5 115.9 0.4 V

116.0 115.9 0.1 V

116.5 115.9 0.6 V

114.3 115.9 1.6 V

115.3 115.9 0.6 V

117.1 115.9 1.2 V

115.2 115.9 0.7 V

116.2 115.9 0.3 V

V V

V V

V V

V V

V V

V V

V V

V V

    

   

   

    

    

   

    

   

 

9 ac

10 ac

11 ac

12 ac

13 ac

14 ac

15 ac

115.2 115.9 0.7 V

115.5 115.9 0.4 V

116.0 115.9 0.1 V

115.8 115.9 0.1 V

115.5 115.9 0.4 V

116.5 115.9 0.6 V

117.2 115.9 1.3 V

V V

V V

V V

V V

V V

V V

V V

    

    

   

    

    

   

   

 

 

 The standard deviation is 

 

               

             

2 2 2 2 2 2 2 2

ac2 2 2 2 2 2 2

ac ac

0.4 0.1 0.6 1.6 0.6 1.2 0.7 0.31
V

14 0.7 0.4 0.1 0.1 0.4 0.6 1.3

8.35
V 0.77 V

14

Vs

           
 
            

 

 

 

and the standard deviation of the mean value is  

 

ac
ac

0.77 V
0.20 V

15
Vs   . 

 

C.1.2  Example 2 – Temperature Measurements 

In this example, a digital thermometer is calibrated in a temperature bath using a standard 

platinum resistance thermometer (SPRT) as the temperature reference.  The bath temperature is 

set so that the SPRT reads 100.000 C and the thermometer temperature is recorded.  This 

procedure is repeated several times.  We will compute the mean and standard deviation of the 

temperature data listed below. 

 

Measurement SPRT C Thermometer C Deviation C 

1 100.000 100.02 0.02 

2 100.000 100.03 0.03 

3 100.000 99.98 -0.02 

4 100.000 100.02 0.02 

5 100.000 100.03 0.03 

6 100.000 100.02 0.02 

7 100.000 99.99 -0.01 

 

The sample mean is computed to be 
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 
1

100.00 C 0.02 0.03 0.02 0.02 0.02 0.03 0.01 C
7

0.09 C
100.00 C 100.00 C 0.01 C 100.01 C

7

T          


        

 

 

and the differences between the measured values and the mean value are 

 

1

2

3

4

5

6

7

100.02 100.01 0.01 C

100.03 100.01 0.02 C

99.98 100.01 0.03 C

100.02 100.01 0.01 C

100.02 100.01 0.01 C

100.03 100.01 0.02 C

99.99 100.01 0.02 C

T T

T T

T T

T T

T T

T T

T T

    

    

     

    

    

    

     

 

 

The standard deviation is  

 

             
2 2 2 2 2 2 21

0.01 0.02 0.03 0.01 0.01 0.02 0.02 C
6

0.0035
C 0.02 C

6

Ts
          
  

   

 

 

and the standard deviation of the mean value is  

 

0.02 C
0.008 C

7
Ts


   . 

 

C.2 Sampled Cells   

In this data sampling format, sample values consist of  repeat measurements that have been 

observed one or more times.  The data are comprised of measured values or deviations from 

nominal, along with the number of times that a value has been observed.   

 

The sample mean, x , is obtained by taking the average of the sampled cell values. The average 

value is computed by summing the sampled cell values and dividing them by the sample size, n. 

 

 
1

1 k

i i
i

x n x
n 

   (C-4) 

where 

  ni = sample size or number of observations of a given sampled value, xi 

 k = number of sampled cells 

and 

 
1

k

i
i

n n


  . (C-5) 
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The sample standard deviation, sx, is computed by taking the square root of the sum of the 

squares of sampled deviations from the mean divided by the sample size minus one. 

 

  
2

1

1

1

k

x i i
i

s n x x
n 

 


  (C-6) 

 

The standard deviation in the mean value is computed as 

 

 x
x

s
s

n
 . (C-7) 

 

C.2.1  Example 1 – AC Voltage Measurements 

In this example, we will use the same AC voltage measurement data used in C.1.1 arranged into 

sample cells. 

 

Sample 

Cell 

AC 

Voltage 

Number 

Observed 

1 115.5 3 

2 116.0 2 

3 116.5 2 

4 114.3 1 

5 115.3 1 

6 117.1 1 

7 115.2 2 

8 116.2 1 

9 115.8 1 

10 117.2 1 

 

The sample mean value is computed to be 

 

ac

ac
ac

3 115.5 2 116.0 2 116.5 114.3 115.3 117.1 2 115.21
V

116.2 115.8 117.215

1737.8 V
115.9 V

15

V
          

  
   

 

 

 

and the differences between the sampled cell values and the mean value are 

 

1 ac

2 ac

3 ac

4 ac

5 ac

115.5 115.9 0.4 V

116.0 115.9 0.1 V

116.5 115.9 0.6 V

114.3 115.9 1.6 V

115.3 115.9 0.6 V

V V

V V

V V

V V

V V

    

   

   

    

    
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6 ac

7 ac

8 ac

9 ac

10 ac

117.1 115.9 1.2 V

115.2 115.9 0.7 V

116.2 115.9 0.3 V

115.8 115.9 0.1 V

117.2 115.9 1.3 V

V V

V V

V V

V V

V V

   

    

   

    

   

 

 

The sample standard deviation is 

 

           

       

2 2 2 2 2 2

ac2 2 2 2

ac ac

3 0.4 2 0.1 2 0.6 1.6 0.6 1.21
V

14 2 0.7 0.3 0.1 1.3

8.35
V 0.77 V

14

Vs

           
 
        

 

 

 

and the standard deviation of the mean value is  

 

ac
ac

0.77 V
0.20 V

15
Vs   . 

 

C.3 Sampled Mean Values   

In this format, the data sample consists of mean values obtained from sets of repeat 

measurements.  The data are comprised of mean values or mean deviations from nominal value,  

along with the standard deviation and sample size for each set of repeat measurements.   

 

For illustration, assume that our sample consists of k mean values and that the ith mean value, 
ix ,  

and standard deviation of the ith sample, si, have been computed via a spreadsheet or other 

program using the following equations 

 

 
1

1 in

i ij
ji

x x
n 

   (C-8) 

 

 2

1

1
( )

1

in

i ij i
ji

s x x
n 

 


 (C-9) 

where  

 

 ni =  the ith sample size  

 ix  =  mean value for the ith sample (i.e., ith mean value) 

 si = standard deviation of ith sample  

 xij =  the jth measurement of the ith sample 

 

The overall mean value, x , (i.e., of all measurements) is computed from equation (C-10). 
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1 1 1

1 1ink k

ij i i
i j i

x x n x
n n  

     (C-10) 

where  

 

 k =  number of samples (i.e., number of mean values entered) 

 n =  total number of measurements (i.e., cumulative of all sample sizes) 

  = 
1

k

i

i

n


  

 

The standard deviation of the sampled mean values relative to the overall mean value is the 

between sample sigma , sb, computed from equation (C-11). 

 

 2

1

1
( )

1

k

b i i
i

s n x x
n 

 


 (C-11) 

 

An indicator of the variation within samples is the within sample sigma, sw, computed from 

equation (C-12).  

 

 2

1

1
( 1)

1

k

w i i
i

s n s
n 

 


 (C-12) 

 

The standard deviation, s, of all xi values is computed from equation (C-13). 

 

 

2

1 1

2 2

1 1

2 2

1
( )

1

1 1
( ) ( 1)

1 1

ink

ij
i j

k k

i i i i
i i

b w

s x x
n

n x x n s
n n

s s

 

 

  


    
 

 

 (C-13) 

 

The standard deviation for the mean of the sample mean values is computed by taking the 

variance of x . 

 

 

 

 

1

2

2
1

1
var var

1
var

k

i i
i

k

i i
i

x n x
n

n x
n





 
  

 

 

 (C-14) 

From equation (C-1),  
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 

 

1

2
1

1
var var

1
var

i

i

n

i ij
ji

n

ij
ji

x x
n

x
n





 
   

 

 

 (C-15) 

 

Since each xij is sampled from a population with a variance equal to 2
x , then 2var( )ij xx   and 

equation (C-15) becomes 

 

 

   2
1

2 2
2

2 2
1

1
var var

1

i

i

n

i ij
ji

n
i x x

x
j ii i

x x
n

n

nn n

 






 

  

 (C-16) 

 

Substituting equation (C-16) into (C-14), gives 

 

  
2 2

2 2

2 2
1

1
var

k
x x

i x x
i

n
x n

nn n

 
 



     (C-17) 

 

where x  is the standard deviation of the mean value population.    

 

The population standard deviation x is estimated with the sample standard deviation s computed 

from equation (C-13).  Similarly, the standard deviation of the mean of the mean values can be 

estimated from equation (C-18). 

 

 x

s
s

n
  (C-18) 

 

C.3.1  Example 1 – Pressure Measurements 

In this example, tire pressure is measured with a gauge.  The procedure consists of taking a small 

sample of measurements and recording the average, standard deviation and sample size.  This 

procedure is repeated five times. The resulting pressure data are listed below. 

 

 

Sample 

Number 

Average 

Pressure 

(lbf/in
2) 

Standard 

Deviation 

(lbf/in
2) 

 

Sample  

Size 

1 31.7 0.6 3 

2 32.3 0.8 5 

3 32.0 1.0 3 

4 30.5 1.3 4 

5 32.7 0.6 3 

 

The overall mean value is computed to be 
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  2
f

2 2
f f

1
3 31.7 5 32.3 3 32.0 4 30.5 3 32.7 lb / in

18

572.7
lb / in 31.8 lb / in

18

P          

 

 

 

and the difference between the sampled mean values and the overall mean are 

 

1

2

3

4

5

2
f

2
f

2
f

2
f

2
f

31.7 31.8 0.1 lb / in

32.3 31.8 0.5 lb / in

32.0 31.8 0.2 lb / in

30.5 31.8 1.3 lb / in

32.7 31.8 0.9 lb / in

P P

P P

P P

P P

P P

    

   

   

    

   

 

 

The standard deviation of the sampled mean values relative to the overall mean is 

 

          2
f

2 2
f f

2 2 2 2 21
3 0.1 5 0.5 3 0.2 4 1.3 3 0.9 lb /in

17

10.6
lb /in 0.8 lb /in .

17

bs             
  

 

 

 

The within sample sigma is computed to be 

 

          2
f

2 2
f f

2 2 2 2 21
3 1 0.6 5 1 0.8 3 1 1.0 4 1 1.3 3 1 0.6 lb /in

17

11
lb /in 0.8 lb /in .

17

ws                
 

 

 

 

The standard deviation is then computed to be 

 

   
2 2 2 2 2

f f f0.8 0.8 lb /in 1.28 lb /in 1.13 lb /ins      

 

and the standard deviation in the mean of the sample mean values is computed to be 

 
2

2f
f

1.13 lb /in
0.51 lb /in .

5
Ps    

 

C.4 Outlier Testing   

In the context of this document, an outlier is defined as a measured value that “appears” to be 

inconsistent with other values observed within a data sample.  Statistically speaking, an outlier 

has a low probability of belonging to the same underlying distribution as other sampled values.  
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As such, however, an apparent outlier may just be an observed value located near the tail of the 

distribution.  

    

Depending on the sample size, one or two outliers can significantly affect the calculated statistics 

by falsely increasing the standard deviation (i.e., distribution spread) or introducing a bias in the 

mean value.  Consequently, the identification and possible exclusion of outliers from the 

calculation of sample statistics may be warranted. 

 

There are various test methods available for identifying statistical outliers from data samples.  

Unfortunately, no single method or practice has gained universal acceptance.  Similarly, no 

consensus exists regarding the exclusion of outliers from subsequent data analysis.73   

 

The criteria for defining and identifying outliers can often be subjective.  Therefore, the decision 

to exclude outliers from your sample statistics should be based on sufficient knowledge about the 

measurement process.  It is also a good practice to report all sample data, including potential 

outliers and the method used to identify them.   

 

C.4.1  Background 

Most outlier tests are based on the evaluation of the relative deviation between the suspected 

outlier and the sample mean.  There are several outlier tests based on the assumption that the 

sample data are normally distributed.  These include Grubbs’ test, Dixon’s test, Rosner’s test and 

Chauvenet’s criterion.   

 

If the data are not believed to follow a normal distribution, then non-parametric (i.e., distribution 

independent) tests can be applied.  However, non-parametric outlier tests are not considered to be 

as reliable as parametric tests and often require sample sizes of 100 or more.   

 

Grubb’s test identifies one outlier at a time, thus requiring an iterative application.  Dixon’s test, 

Rosner’s test and Chauvenet’s criterion identify one or more outliers.  Chauvenet’s criterion has 

achieved relatively wide acceptance because it applies a simple, yet extremely effective non-

parametric technique to identify potential outliers.   

   

C.4.2  Chauvenet’s Criterion74 

Chauvenet’s criterion defines acceptable scatter around a mean value x  for a given sample of n 

readings and standard deviation sn.  It specifies that all points should be retained that fall within a 

band around the mean value that corresponds to a probability of 1 – 1 / 2n.   

 

The normal distribution is used to determine the number of sample standard deviations that relate 

to this probability.  This “coverage factor” is obtained using the two-tailed inverse normal 

function  

 

 
1 1

2

n
n

P
L   

   
 

, (C-19) 

                                                 
73 In fact, the FDA guidance “Investigating Out of Specification (OOS) Test Results for Pharmaceutical Production” indicates 

that a chemical test result cannot be omitted with an outlier test, but a bioassy can be omitted.  Content uniformity and dissolution 

testing are specific areas that prohibit outlier removal.  

74 Coleman, H. W. and Steele, W. G.: Experimentation and Uncertainty Analysis for Engineers, 2nd Edition, Wiley Interscience 

Publication, John Wiley & Sone, Inc., 1999, pp 34-37. 
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where 

1 1/ 2nP n  . 

 

Any points that lie outside n nx L s  are rejected. 

 

C.5 Normality Testing   

As previously discussed, the statistical analysis of samples is often based on the assumption that 

the data follow the normal distribution.  Therefore, it is often necessary to assess whether the 

data are indeed normally distributed or a least approximately normally distributed.  If the data are 

not normally distributed, then the following questions should be asked 

 

 Is the apparent non-normality a result of potential outliers?   

 Can the data be normalized via a transform function (e.g., log transform)? 

 Should the data be evaluated using non-parametric (i.e., distribution-free) 

statistics?  

 

C.5.1  Background 

Both qualitative and quantitative methods can used to determine if the sampled data can be 

assumed to be normally distributed.  Qualitative or graphical methods include the use of 

frequency histogram, normal probability and box-whisker plots.  Quantitative or statistical 

methods include tests for skewness and kurtosis, the chi-squared test, the Kolmogorov-Smirnov 

test and the Shapiro-Wilk test, as well as variations of these tests.75    

 

While graphical techniques provide a visual depiction of the data, their interpretation can be 

highly subjective, especially when the sample size is small (i.e., n < 10).  Statistical tests provide 

more formal, objective methods for assessing whether the normal distribution provides an 

adequate description of the observed data. 

 

Statistical normality tests typically include the following basic procedure: 

 

1. A test statistic is calculated from the observed data. 

2. Assuming the normal distribution is indeed applicable, the probability of 

obtaining the calculated test statistic is determined. 

3. If the probability of obtaining the calculated test statistic is low (i.e., less than 

0.05) then it is concluded that the normal distribution does not provide an 

adequate representation of the observed data.  Conversely, if the probability is 

not low, then there is no evidence to reject the assumptions that the data are 

normally distributed.  

 

Note:  The value set for the low probability is based on a user-defined confidence 

level (i.e., 90%, 95% or 99%).  It is also important to understand that the outcome 

of a statistical test is highly dependent on the amount of data available.  The larger 

                                                 
75 For example, see Bain, L. J. and Engelhardt, M.: Introduction to Probability and Mathematical Statistics, Duxbury Press, 

1992. 



 

182 

the sample size, the better the chances of rejecting (or accepting) the normal 

distribution assumption. 

 

The chi-squared and Shapiro-Wilk tests provide the best means of determining whether or not 

the data are sampled from a normal distribution.  The chi-squared method requires large data 

samples (i.e., n  50).  An advantage of the Shapiro-Wilk test is that it can be used for smaller 

sample sizes (20  n  50). 

 

For samples of size 10 or more, statistical tests can also be performed to evaluate the skewness 

and kurtosis of the sample in comparison to what is expected of samples from a normally 

distributed population.   

 

C.5.2  Skewness and Kurtosis Tests (n  10) 

Descriptive statistics, such as skewness and kurtosis, can provide relevant information about the 

normality of the data sample.  Skewness is a measure of how symmetric the data distribution is 

about its mean.  Kurtosis is a measure of the “peakedness” of the distribution.  

 

If x1, x2, ..., xn are sampled values from a sample of size n with mean x  and standard deviation s, 

the sample coefficient of skewness c3 and coefficient of kurtosis c4 are given by76 
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and 
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where 
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1

1
( )

1

n

i
i

s x x
n 

 


. 

 

The coefficient of skewness for a normal distribution is 0 (i.e., there is no deviation from 

symmetry).  The kurtosis of the normal distribution is 3.  Consequently, if the skewness of the 

data sample differs significantly from 0, then it exhibits an asymmetric distribution.  Similarly, if 

the kurtosis is significantly different from 3, then the distribution is either flatter or more peaked 

than the normal distribution. 

 

C.5.3  Chi-square (2) Test (n  50) 

The chi-squared goodness-of-fit test is based on the relative differences between observed 

frequencies from a histogram plot of the data and the theoretical frequencies predicted by the 

probability density function for the normal distribution.   

                                                 
76

 NIST/SEMATECH, e-Handbook of Statistical Methods, www.ITL.NIST.gov/div898/handbook 

/eda/section3/eda35b.htm. 
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C.5.4  Shapiro-Wilk Test (20  n  50) 

The Shapiro-Wilk test for normality consists of computing a W statistic based on the tabulated 

coefficients, the sample standard deviation and sample size.  A critical value W is also obtained 

from tabulated values for sample size n and significance level  , which is usually set equal to 

0.10 or 0.05.  The criteria for accepting or rejecting the normal distribution hypothesis is whether 

or not W  W.    

 

C.6 Sample Size Evaluation  

As previously stated, sample size can affect results of normality and outlier tests.  In fact, some 

test methods require a minimum sample size.  More importantly, however, the size of a data 

sample can affect the computed sample mean x , standard deviation sx, and the standard 

deviation in the mean xs .    

 

For example, consider the sample of AC voltage measurements given in Section C.1.1.  If the 

measurement process stopped after the first 5 voltage measurements were collected, then 

 

  ac ac
1

115.5 116.0 116.5 114.3 115.3 V 115.5 V
5

V        

 

1 ac

2 ac

3 ac

4 ac

5 ac

115.5 115.5 0.0 V

116.0 115.5 0.5 V

116.5 115.5 1.0 V

114.3 115.5 1.2 V

115.3 115.5 0.2 V

V V

V V

V V

V V

V V

   

   

   

    

    

 

 

         
2 2 2 2 2

ac ac
1

0.0 0.5 1.0 1.2 0.2 V 0.83 V
4

Vs
        
  

 

 

and 

ac
ac

0.83 V
0.37 V

5
Vs   . 

 

Comparison of the computed statistics obtained for the two sample sizes are shown below. 

 

n = 5 15 

V = 115.5 115.9 

Vs = 0.83 0.77 

Vs = 0.37 0.20 

 

In general, the sample size should be sufficient to achieve the goal of data sampling, which is to 

make inferences about the population characteristics.  Therefore, we must return to the question: 

“how large does the sample size need to be?”   
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A sample size evaluation method, based on the central limit theorem and probability theory, is 

discussed in Section C.6.1.  This method provides a straightforward approach to the assessment 

of the minimum sample size required to achieve a specified maximum deviation between the 

sample mean and the population mean. 

 

C.6.1  Methodology77 

Let x1, x2, …, xn represent repeat, independent unbiased measurements from a distribution with 

mean  and standard deviation .  According to the law of large numbers,78 the sample average 

x  for these measurements converges to  in probability.  Therefore, we can assume that is a 

good estimate of , if the sample size n is large. 

 

The central limit theorem allows us to use the normal distribution to estimate the probability that 

the magnitude of the difference between x  and  is less than some maximum value c.  

 

  (| | ) ( )P x c P c x c         (C-22) 

 

To estimate P, we first note that the expectation value of x  is , and the variance in x  is 2/n. 

Then the variable 

/

x

n






 

 

is normally distributed with population mean = 0 and population variance = 1.  Accordingly, we 

can write 
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where  is the normal distribution function.  Equating this probability to a confidence level  for 

the condition | x –  | < c, we have 
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n

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 
 (C-24) 

 

and 

 
-1 1

2/
Φ
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n




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 
 (C-25) 

 

                                                 
77 Rice, J.: Mathematical Statistics and Data Analysis, Duxbury Press, Belmont, 1995, page 172. 

78 The law of large numbers is a fundamental theorem of probability developed by Jacob Bernoulli circa 1713. 
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where  is the inverse normal distribution function.  Rearranging equation (C-25), we have 

 

   -1 1
/

2
Φn c




 
  

 
 (C-26) 

 

In practice, we usually don’t know the value of .  Accordingly, we use the best available 

estimate.  In many cases, this is the sample standard deviation s.  With this substitution, we have 

   

   -1 1
/

2
Φn s c

 
  

 
 (C-27) 

 

C.6.2  Example 1 –  Evaluation using a Sample Standard Deviation 

In this example, we will use the measurement sample listed below to estimate the minimum 

sample size needed to ensure that the sample mean will fall within 0.8 VAC of the population 

mean with 95% confidence level. 

 

Measurement AC Voltage 

1 115.5 

2 116.0 

3 116.5 

4 114.3 

5 115.3 

6 117.1 

 

The sample mean is computed to be 

 

  ac

ac
ac

1
115.5 116.0 116.5 114.3 115.3 117.1 V

6

694.7 V
115.8 V

6

V      

 

 

 

and the differences between the measured values and the mean value are 

 

1 ac

2 ac

3 ac

4 ac

115.5 115.8 0.3 V

116.0 115.8 0.2 V

116.5 115.8 0.7 V

114.3 115.8 1.5 V

V V

V V

V V

V V

    

   

   

    

 

5 ac

6 ac

115.3 115.8 0.5 V

117.1 115.8 1.3 V .

V V

V V

    

   
 

 

The standard deviation is 
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           
2 2 2 2 2 2

ac

ac ac

1
0.3 0.2 0.7 1.5 0.5 1.3 V

5

4.81
V 0.98 V .

5

Vs
         
  

 

 

 

Applying equation (C-27), with c = 0.8 Vac and  = 0.95, we have 

 

 

 

-1

-1

1 0.95
0.98 / 0.8

2

1.23 0.975

1.23 1.96

2.4

Φ

Φ

n
 

  
 

 

 



 

 

and  
2

2.4 6.n     Therefore, given our initial criteria, the existing sample size should be 

sufficient.  However, if we had set c = 0.6 Vac then 

 

 

 

-1

-1

1 0.95
0.98 / 0.6

2

1.63 0.975

1.63 1.96

3.2

Φ

Φ

n
 

  
 

 

 



 

 

and  
2

3.2 10.n     In this case, the existing sample size of 6 would not be sufficient. 

 

C.6.3  Example 2 –  Evaluation using a Population Standard Deviation 

In this example, we will assume that a special temperature measurement test was conducted to 

collect a large data sample (i.e., 50 or more observations) to characterize the population standard 

deviation, .  From analysis of the large data sample we obtained a value of  = 0.1 F. 

 

We will use this estimation for the population standard deviation to economize the collection of 

future samples based on the following criteria 

 

c = 0.05 F  and   = 0.99. 

 

Applying equation (C-26), we have 

 

 

 

-1

-1

1 0.99
0.1/ 0.05

2

2 0.995

2 2.576

5.15

Φ

Φ

n
 

  
 

 

 


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and  
2

5.15 27.n      

 

However, if we lower our confidence level to  = 0.95, then 

 

 

 

-1

-1

1 0.95
0.1/ 0.05

2

2 0.975

2 1.96

3.92

Φ

Φ

n
 

  
 

 

 



 

and  
2

3.92 15.n    

 

Alternatively, we can use equation (C-24) to estimate the confidence level for the condition 

|T –  | < 0.05 F , given  = 0.1 and n = 10.  

 

 

0.05
2 1

0.1/ 10

2 1.58 1

2 0.943 1

0.886.

Φ

Φ


 

  
 

 

  



 

 

In this case, there is a 88.6% probability that the value of T obtained from 10 repeat 

measurements would be within  0.05 F of the population mean, .  
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APPENDIX D – ESTIMATING TYPE B DEGREES OF 
FREEDOM 
 

The amount of information used to estimate the uncertainty in a given error source is called the 

degrees of freedom.  The degrees of freedom is required, among other things, to employ an 

uncertainty estimate in computing confidence limits commensurate with some desired 

confidence level. 

 

A Type A estimate is a standard deviation computed from a sample of data.  In test or 

calibration, the sample standard deviation represents the uncertainty due to random error or 

repeatability accompanying a measurement.  From the discussion in Appendix C, recall that the 

degrees of freedom for this uncertainty is given by 

 

1n    

where n is the sample size. 

 

A Type B estimate is, by definition, an estimate obtained without recourse to a sample of data.  

Accordingly, for a Type B estimate, we don’t have a sample size to work with.  However, we can 

develop something analogous to a sample size by applying the method described herein. 

 

This methodology was originally developed in 1997 by Dr. Howard Castrup to provide a 

rigorous approach for estimating Type B degrees of freedom.  The method includes a formal 

structure for extracting information from the measurement experience of scientific or technical 

personnel. This information is used to calculate Type B uncertainty estimates and to approximate 

the degrees of freedom of the estimate. 

     

D.1 Methodology   

The approach used to estimate the degrees of freedom for Type B estimates begins with the 

relation proposed in the GUM.79 

 

 
2

2

1 ( )

2 [ ( )]

u x

u x



  (D-1) 

 

The method for computing the variance80 in the uncertainty, 2[u(x)], is outlined in the following 

steps:  

 

1. We generalize the equation for the Type B uncertainty estimate as 

 

 
( )

B

L
u

p
  (D-2) 

 

 where L in the containment limit, p is the containment probability, and (p) is 

defined as 

                                                 
79 Equation G.3, Annex G of the GUM.  

80 In this document, the terms 2[] and 2() are equivalent to variance operator var(). 
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  1( ) (1 ) / 2p p     (D-3) 

    

and the function 1
     is the inverse normal distribution function. 

 

2. The error in the uncertainty, uB, due to errors in L and p is estimated using a first 

order Taylor Series expansion. 
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 (D-4) 

 

where L and p are errors in L and p, respectively.   

 

3. Assuming statistical independence between L and p, the variance in uB is 

obtained using the variance addition rule. 
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By definition, the uncertainty of a quantity x is equal to the square root of the variance in  the 

error in x. 

var( )x xu   

 

Therefore, the variance in L and p can be expressed as  

 
2var( )L Lu   and 2var( )p pu  . 

  

Equation (D-5) can then be expressed as 
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Dividing equation (D-6) by the square of equation (D-2), we get  
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The derivative in equation (D-7) is obtained from equation (D-3).  We first establish that 

 

 
2 / 21 1

[ ]
2 2

p
e d

  






     (D-8) 

 

where     is the probability density function for the normal distribution. 

 

We next take the derivative of both sides of this equation with respect to p to get 
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and, finally, 

   

 
2 / 2

2

d
e

dp

 
 . (D-10) 

 

Substituting equation (D-10) into equation (D-7) gives 
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which, with the aid of equation (D-1), yields 
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D.2 Analysis Formats 

In applying equation (D-11), we are confronted with the problem of obtaining uL and up.  These 

quantities can be estimated using any of the four formats described in the following subsections. 

 

D.2.1 Format 1: % of Values   

This format reads "Approximately C% (±c%) of observed values have been found to lie within 

the limits ±L (±L)."   

 

In this format, a technical expert is asked to provide the error limits ±L and ± c%.  These 

limits are used to estimate uA and up.  The containment probability is 

  

p = C / 100 

 

where C is the percentage of values of y observed within ±L.   

 

If we assume that the errors in the estimates of L and p are approximately uniformly distributed 

within ±L and ±p = ±c% / 100, respectively, then we can write 
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and 

  
2

2 ( )

3
p

p
u


  (D-13) 

 

Use of the uniform distribution is appropriate here, since the ranges ±L and ±p can be 

considered analogous to "limits of resolution," for which the uniform distribution is applicable.  

This obviates the need for estimating confidence levels for L and p.  Any lack of rigor 

introduced by this tactic is felt as a third order effect and does not materially compromise the 

rigor of our final result.  Note, however, that the minimum limits criterion, described in 

Appendix B, are still in effect. 

 

Substituting equations (D-12) and (D-13) in equation (D-11) gives 
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2 33

B

B

u L p
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Using equation (D-14) in equation (D-1) yields an estimate for the degrees of freedom, B, for a 

Type B uncertainty estimate. 
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 (D-15) 

 

If L and p are set equal to zero, then the Type B degrees of freedom becomes infinite.  

Obviously, in most cases, it is not realistic to have infinite degrees of freedom for Type B 

uncertainty estimates.  Therefore, it behooves us to attempt to apply whatever means we have at 

our disposal to obtain a sensible estimate for B.   

 

D.2.2 Format 2: X out of N   

This format reads "Approximately X out of N observed values have been found to lie within the 

limits ±L (±L)." 

 

In this format, the containment probability is expressed as p = X / N, where N is the number of 

observations of a value and X is the number of values observed to fall within ±L (± L).  The 

variance in L is obtained the same as in Format 1.  The variance in the containment probability p 

can be obtained by taking advantage of the binomial character of p. 

 

 2 (1 )
p

p p
u

N


   (D-16) 

 

Substituting in equations (D-12) and (D-16) into equation (D-11) gives 
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Using equation (D-17) in equation (D-1) yields  
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D.2.3 Format 3: % of Cases   

This format reads "Approximately C% of N observed values have been found to lie within the 

limits ±L (±L)." 

 

This format is a variation of Format 2 in which the containment probability is stated in terms of a 

percentage C of the number of observations n, with p = C / 100.  The equation for estimating the 

degrees of freedom is the same as for Format 2: 
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D.2.4 Format 4: % Range   

This format reads "Between C1% and C2% of observed values have been found to lie between 

the limits ±L (±L)." 

 

This format is a variation of Format 1 in which a range of values is given for the containment 

probability, p = C/100, where C = (C1 + C2) and ±c = (C2 - C1)/2.  The equation for estimating 

the degrees of freedom is the same as for Format 1: 
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APPENDIX E – BAYESIAN ANALYSIS 
 

Using Bayes theorem, methods were developed in the mid to late 1980s that enabled the analysis 

of false accept risk for unit-under-test (UUT) parameters, the estimation of both UUT parameter 

and measurement reference (MTE) biases, and the uncertainties in these biases.  These methods 

have been referred to as Bayesian risk analysis methods or, simply, Bayesian analysis methods. 

 

In applying Bayesian analysis methods, we can refine estimates of the UUT and MTE attribute 

biases and compute in-tolerance probabilities based on a priori knowledge and on measurement 

results obtained during testing or calibration. 

 

The fundamentals of the Bayesian method are presented in the following sections.  Derivations 

of the expressions used in this appendix are given in NASA Measurement Quality Assurance 

Handbook ANNEX 4 – Estimation and Evaluation of Measurement Decision Risk. 

 

Note:  The Bayesian method described herein is applicable when parameter biases 

are normally distributed. 

 

E.1 Bayes Theorem 

In the 18th century, Reverend Thomas Bayes expressed the probability of any event, E1, – given 

that a related event, E2, has occurred – as a function of the probabilities of the two events 

occurring independently and the probability of both events occurring together. 

 

 1 2
1 2

2

( , )
( | )

( )

P E E
P E E

P E
  (E-1)  

 

where the joint probability P(E1,E2) is defined as  

 

 1 2 2 1 1 1 2 2( , ) ( | ) ( ) ( | ) ( )P E E P E E P E P E E P E   (E-2) 

  

So, the conditional probability P(E1E2) can be expressed as 

 

 2 1 1
1 2

2

( | ) ( )
( | )

( )

P E E P E
P E E

P E
  (E-3) 

 

Bayes' theorem proves to be of considerable value in computing measurement decision risks in 

test and calibration.  Its derivation is simple and straightforward. 

 

E.1.1 Joint Probability 

In measurement decision risk analysis, we are often interested in the probability of two events 

occurring simultaneously.  For example, we might want to know the probability that a UUT 

attribute is both in-tolerance and perceived as being in-tolerance.  If we represent the event of an 

in-tolerance attribute as E1 and the event of observing the attribute to be in-tolerance as E2, then 

the joint probability for occurrence of E1 and E2 is written 

 

 1 2 1 2(  and ) ( , )P E E P E E . (E-4) 
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E.1.1.1 Statistical Independence 

If the occurrence of event E1 and the occurrence of event E2 bear no relationship to one another, 

they are called statistically independent.  For example, E1 may represent the outcome that an 

individual selected at random from within a group of males is 30 years old and E2 may represent 

the event that his shoe size is 11. 

 

It can be shown that, for statistically independent events, 

 

 1 2 1 2( , ) ( ) ( )P E E P E P E  (E-5) 

 

Another important result derives from the probability that event E1 will occur or event E2 will 

occur.  The appropriate relation is 

 

 1 2 1 2 1 2(  or ) ( ) ( ) ( , )P E E P E P E P E E    (E-6) 

 

Substituting equation (E-5) into equation (E-6) gives the relation for cases where E1 and E2 are 

independent. 

 

 1 2 1 2 1 2(  or ) ( ) ( ) ( ) ( )P E E P E P E P E P E    (E-7) 

 

E.1.1.2 Mutually Exclusive Events 

On occasion, events are mutually exclusive.  That is, they cannot occur together.  A popular 

example is the tossing of a coin.  Either heads will occur or tails will occur.  They obviously 

cannot occur simultaneously.  This means that 1 2( , ) 0P E E  , and 

 

 1 2 1 2(  or ) ( ) ( )P E E P E P E   (E-8) 

 

E.1.2 Conditional Probability 

If the occurrence of E2 is influenced by the occurrence of E1, we say that E1 and E2 are 

conditionally related and that the probability of E2 is conditional on event E1.  Conditional 

probabilities are written 

 

 2 1 2 1(  given ) ( | )P E E P E E  (E-9) 

 

It can be shown that the joint probability for E1 and E2 can be expressed as 

 

 1 2 1 2 2( , ) ( | ) ( )P E E P E E P E  (E-10) 

 

Equivalently, we can also write 

 

 2 1 2 1 1( , ) ( | ) ( )P E E P E E P E  (E-11) 

 

Note that, since P(E1,E2) = P(E2,E1), we have 
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 1 2 2 2 1 1( | ) ( ) ( | ) ( )P E E P E P E E P E  (E-12) 

 

Rearranging equation (E-12), we have Bayes’ theorem given in equation (E-3). 

 

2 1 1
1 2

2

( | ) ( )
( | )

( )

P E E P E
P E E

P E
  

 

E.2 Risk Analysis for a Measured Variable 

The procedure for applying Bayesian analysis methods to perform risk analysis for a measured 

attribute or parameter is as follows: 

 

1. Assemble all relevant a priori knowledge, such as the tolerance limits for the 

UUT attribute, the tolerance limits for the MTE attribute, the in-tolerance 

probabilities for each attribute and the uncertainty of the measurement process. 

2. Perform a measurement or set of measurements.  This may consist either of 

measuring the UUT attribute with the MTE attribute, measuring the MTE 

attribute with the UUT attribute or using both attributes to measure a common 

artifact. 

3. Estimate the UUT attribute and MTE attribute biases using Bayesian analysis 

methods. 

4. Compute uncertainties in the bias estimates. 

5. Act on the results.  Report the biases and bias uncertainties, along with in-

tolerance probabilities for the attributes, or adjust each attribute to correct the 

estimated biases, as appropriate. 

 

E.3 A priori Knowledge 

The a priori knowledge for a Bayesian analysis may include several kinds of information.  For 

example, if the UUT attribute is the pressure of an automobile tire, such knowledge may include 

a rigorous projection of the degradation of the tire's pressure as a function of time since the tire 

was last inflated or a SWAG estimate based on the appearance of the tire's lateral bulge.  

However a priori knowledge is obtained, it should lead to the following quantities: 

 

 Estimates of the uncertainties in the biases of both the UUT attribute and MTE 

attribute.  These estimates may be obtained heuristically from containment limits 

and containment probabilities or by other means, if applicable. 

 An estimate of the uncertainty in the measurement process, accounting for all 

error sources. 

 

E.4 Post-Test Knowledge 

The post-test knowledge in a Bayesian analysis consists of the results of measurement.  As stated 

earlier, these results may be in the form of a measurement or a set of measurements.  The 

measurements may be the result of readings provided by the MTE attribute from measurements 

of the UUT attribute, readings provided by the UUT attribute from measurements of the MTE 

attribute, or readings provided by both the UUT attribute and MTE attribute, taken on a common 

artifact. 
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E.5 Bias Estimates 

Initial UUT attribute and MTE attribute biases are estimated using the method described in 

Chapter 8.  The method encompasses cases where a measurement sample is taken by either the 

UUT attribute, the MTE attribute or both.  The variables are given in Table E-1. 

 

Table E-1.  Bayesian Estimation Variables 

Variable  Description 

eUUT,b  the UUT attribute bias at the time of calibration 

uUUT,b  the UUT attribute bias standard uncertainty 

  a measurement (estimate) of eUUT,b obtained through 

calibration. 

eMTE,b  the MTE attribute bias at the time of calibration 

uMTE,b  the MTE attribute bias standard uncertainty 

ucal  the uncertainty in the UUT attribute calibration process, as 

defined in Chapter 8. 

-L1 and L2  the lower and upper UUT attribute tolerance limits 

-l1 and l2  the lower and upper MTE attribute tolerance limits 

 

E.5.1 Refinement of the UUT Bias Estimate 

Employing the nomenclature listed in Table E-2 and the Bayes’ relation given in equation (E-3), 

the conditional distribution of eUUT,b given a value of  is defined as 
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where the probability density function for  is  
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For normally distributed values of eUUT,b and , 
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and 
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Table E-2.  Risk Analysis Probability Density Functions 

pdf Description 

f(eUUT,b) pdf for the UUT bias at the time of calibration 

f() pdf for the measurement result 

f(, eUUT,b) pdf for the joint distribution of  and eUUT,b 

f(| eUUT,b) pdf for the conditional distribution of  given a 

value of eUUT,b 

f(eUUT,b | ) pdf for the conditional distribution of eUUT,b 

given a value of  

f(eMTE,b | ) pdf for the conditional distribution of eMTE,b 

given a value of  

 

Note:  The pdf designations in Table E-2 are consistent with those used in NASA Measurement 

Quality Assurance Handbook ANNEX 4 – Estimation and Evaluation of Measurement Decision 

Risk. 

 

Substituting equations (E-15) and (E-16) into equation (E-14) gives 
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Evaluation of the exponential argument is provided in equation (E-18). 
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Defining the combined uncertainty 
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equation (E-18) becomes 



 

198 

 

 

2
,

, ,2
,

2 2
, ,

,2
,

2
,

,2
,

2 2
2

2 2 2

2
2 2

2

2 2 2 2 2

2
2

2 2

1
arg 2

2

1

2

1

2

UUT b
UUT b UUT b

UUT b

UUT b UUT b
UUT b

UUT b

UUT b
UUT b

UUT b

A

A

A

A A

A

A

cal cal

cal cal cal

cal

uu
e e

u u u u

u uu
e

u u u u u u

uu
e

u u u





 



  
     

    

  
      
  

   

 
   
 
 

2
,

2
,

,2
,

22

2 2

2
2 2

2 2 2

1

2

UUT b

UUT b
UUT b

UUT b

A

A

A

A A

cal

cal

u u

u u

uu
e

u u u u






    
  

   

  
     
  

   

 (E-20) 

 

Substituting the variables 
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into equation (E-20), the exponential argument can be written as 

 

 
 ,

2
2

2 2

1
arg

2

UUT b

A

e

u

 



 
   
 
 

 (E-21) 

 

Finally, defining the variable 

,UUT be 





  

 

where ,UUT bde d  , equation (E-17) can be written  
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Substituting equations (E-15), (E-16) and (E-22) into equation (E-13), yields 
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where 
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Given these results, along with the properties of the normal distribution, we see that  is the 

refined estimate for eUUT,b and u is the estimated bias uncertainty. 
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and 
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E.5.2 Refinement of the MTE Bias Estimate 

With the Bayesian method, calibration results can be used to obtain an estimate of the bias of the 

calibration MTE attribute and the uncertainty in this estimate.  This is accomplished by 
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imagining that the UUT is calibrating the MTE.  We begin by replacing uUUT,b with uMTE,b and  

with – in equation (E-26). 
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The first step in estimating the MTE attribute bias uncertainty is to define a new uncertainty 

term. 
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Next, a calibration uncertainty is defined that would apply if the UUT were calibrating the MTE. 
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Using this quantity in equation (E-27) yields the MTE attribute bias uncertainty. 
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E.6   In-Tolerance Probabilities 

The in-tolerance probabilities for the UUT and MTE attributes are estimated by integrating the 

appropriate pdf over the corresponding upper and lower tolerance limits.  

 

E.6.1 UUT Attribute In-Tolerance Probability 

An estimate of the UUT attribute in-tolerance probability PUUT,in is obtained by integrating 

,( | )UUT bf e   from –L1 to L2. 
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where  is given in equation (E-26). 

 

E.6.2 MTE Attribute In-Tolerance Probability 

Since we have the necessary expressions at hand, we can also estimate the in-tolerance 

probability of the MTE attribute, PMTE,in.  This probability is obtained by integrating the pdf 

,( | )MTE bf e   from –l1 to l2. 
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where  is given in equation (E-28). 
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APPENDIX F – FORCE GAUGE ANALYSIS EXAMPLE 
 

The purpose of this analysis is to estimate and report the uncertainty in the calibration result  

obtained for an applied forced.  The force measurement uncertainty is estimated using the  

analysis procedure discussed in Chapter 5.   

 

F.1 Measurement Process Overview 

A Chatillon model DGGS-250G digital force gauge is calibrated using a weight set 

manufactured by Rice Lake Bearing Inc.  The force gauge has a full scale output of 250 g-force 

or 8 oz-force (ozf) and a specified accuracy of ± 0.15% FS ± 1 LSC (least significant character or 

count).81  The digital display resolution of the force gauge is specified as 0.005 oz-force.   

 

When specifications are reported as  L1  L2, they are typically combined in root sum square to 

obtain the total specification limits,  L.  

 

2 2
1 2L L L     

 

However, when contacted for verification, Chatillon technical support personnel stated that the 

accuracy specifications for their DGGS-250G digital force gage should be added.  Therefore, the 

total specification limits are computed to be 

 

 
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1 2

0.15
8ozf 0.005ozf

100

0.012 0.005 ozf

= 0.017 ozf.
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 
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 

  



 

 

Note:  Given the inconsistencies in which equipment specifications are reported, 

it is always a good practice to seek additional manufacturer clarification to ensure 

their proper interpretation and application. 

 

The force gauge is mounted on a calibration base and oriented in either the tension or 

compression mode.  The total applied force is obtained by attaching a combination of calibration 

weights.  In the tension mode, the calibration weights are hung from the measurement shaft of 

the force gauge.  In the compression mode, the calibration weights are placed on the 

measurement shaft 

 

The assigned mass of each calibration weight is corrected for local gravity and air buoyancy to 

determine the apparent force.82 

 

 F = m × cf (F-1)  

where  

                                                 
81 Chatillon DFGS Series Specification data sheet, SS-FM-3112-1101, November 2001, Ametek, Inc. 

82 P. King: “Determining Force from Assigned Mass Values,” Wyle Interoffice Correspondence 5321-05-080, July 6, 2005. 



 

203 

 F = applied force, oz-force 

 m = applied mass, oz 

 cf = conversion factor, oz-force/oz  

 

The primary purpose of the calibration is to obtain an estimate of the bias of the unit under test 

(UUT) force gage.  The calibration result is the difference between the average force gauge 

reading and the applied force.  This difference is denoted by the variable  and defined by 

 

 x F    (F-2) 

 

where x  is the average force gauge reading.  

 

Calibration data83 for the tension and compression modes are listed in Tables F-1 and F-2, 

respectively. 

 

Table F-1.  Tension Mode Calibration Data 

 

Applied 

Mass 

(oz) 

 

Applied 

Force 

(ozf) 

Force Gauge 

Reading 

Run1 

(ozf) 

Force Gauge 

Reading 

Run2 

(ozf) 

Force Gauge 

Reading 

Average 

(ozf) 

Measured 

Difference 

 
(ozf) 

Force Gauge 

Specification 

Limits 

(ozf) 

0.0000 0.0000 0.000 0.000 0.000 0.0000 ± 0.017 

1.6000 1.5974 1.595 1.600 1.598 0.0001 ± 0.017 

3.2000 3.1948 3.195 3.195 3.195 0.0002 ± 0.017 

4.8000 4.7922 4.790 4.795 4.793 0.0003 ± 0.017 

6.4000 6.3897 6.385 6.380 6.388 -0.0022 ± 0.017 

8.0000 7.9871 7.985 7.985 7.985 -0.0021 ± 0.017 

 

Table F-2.  Compression Mode Calibration Data 

 

Applied 

Mass 

(oz) 

 

Applied 

Force 

(ozf) 

Force Gauge 

Reading 

Run1 

(ozf) 

Force Gauge 

Reading 

Run2 

(ozf) 

Force Gauge 

Reading 

Average 

(ozf) 

Measured 

Difference 

  
(ozf) 

Force Gauge 

Specification 

Limits 

(ozf) 

0.0000 0.0000 0.000 0.000 0.000 0.0000 ± 0.017 

1.6000 1.5974 1.595 1.595 1.595 -0.0024 ± 0.017 

3.2000 3.1948 3.195 3.195 3.195 0.0002 ± 0.017 

4.8000 4.7922 4.790 4.790 4.790 -0.0022 ± 0.017 

6.4000 6.3897 6.385 6.385 6.385 -0.0047 ± 0.017 

8.0000 7.9871 7.985 7.985 7.985 -0.0021 ± 0.017 

 

If the value of  falls outside of the specified tolerance limits,84 then the UUT bias is typically 

deemed to be out-of-tolerance (OOT) or noncompliant.   

 

However, errors in the calibration process can result in an incorrect OOT assessment (false-

reject) or incorrect in-tolerance assessment (false-accept).  The relationship between the 

calibration result, , and the true UUT bias, eUUT,b, is generally expressed as 

                                                 
83 Wyle Laboratories Calibration Data Sheet Number M64118 11Aug08 

84 Since the tolerance limits constitute the maximum permissible difference or deviation, they should be expressed in units  that 

are consistent with those measured during calibration.  
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 ,UUT b cale   . (F-3) 

 

The probability that the UUT bias is in-tolerance is based on the calibration result and its 

associated uncertainty.  Therefore, all relevant calibration error sources must be identified and 

combined in a way that yields viable uncertainty estimates. 

 

F.2 Uncertainty Analysis Procedure 

The purpose of this analysis is to estimate and report the total uncertainty in  for each force 

applied during the calibration.  The uncertainty in  is determined by applying the variance 

operator to equation (F-3) and taking the square root. 

 

 
   

 

,var var

var

UUT b cal

cal

u e  



  


 (F-4) 

 

The force gauge calibration error, cal, is defined as 

  

 cal F res rep         (F-5) 

where 

 F = error in the applied force 

 res = force gauge resolution error  

 rep = repeatability or random error   

 

Note:  Operator bias is not considered relevant to this analysis. 

 

As shown in equation (F-1), the applied force is a function of the applied mass and the 

conversion factor.  Consequently, the error in the applied force is defined as 

 

 F m m cf cfc c       (F-6) 

where 

       m  =  error in the value of the calibration weight(s)  

       cf  =  error in the gravitational and air buoyancy correction factor  

 cm, ccf  =  sensitivity coefficients 

 

Substituting equation (F-6) into (F-5), the calibration error equation can be expressed as 

 

  cal res repm m cf cfc c        .   (F-7) 

 

Brief descriptions of the applicable calibration error sources are provided in the following 

subsections. 

 

F.2.1 Calibration Weight (m) 
A Chatillon model 0.1OZ-1LB-F weight set is used to calibrate the force gauge.  The mass 

values and tolerance limits of the weight set are listed in Table F-3.  The applied mass is 



 

205 

obtained by using a combination of weights, m = m1 + m2 + m3.  Therefore, the error in the total 

applied mass is expressed as 

 

 
1 2 3m m m m         (F-8) 

 

In this analysis, the errors contained within the mass tolerance limits are assumed to follow a 

normal distribution.  The tolerance limits are also assumed to represent 95%confidence limits. 

 

Table F-3.  Calibration Data for Weight Set85 

 

Weight 

ID 

Nominal 

Weight 

(oz) 

Measured  

Weight 

(oz) 

Deviation from  

Nominal 

(oz) 

Tolerance 

Limits86 

(oz) 

 0.1 0.09999 -0.00001 ± 0.00005 

 0.2 0.20003 0.00003 ± 0.00006 

0.3 0.3 0.30000 0.00000 ± 0.00006 

½ 0.5 0.50003 0.00003 ± 0.00010 

1 1 1.00011 0.00011 ± 0.00019 

2 2 2.00014 0.00014 ± 0.00039 

4 4 4.00035 0.00035 ± 0.00081 

8 8 8.00052 0.00052 ± 0.00159 

16 16 16.00052 0.00052 ± 0.00247 

 

F.2.2  Conversion Factor (cf) 

The factor for converting the applied mass to force is 0.9983830 oz-force/oz.  The correction 

factor accounts for local gravity and air buoyancy.  The expanded uncertainty for the correction 

factor is estimated to be ± 6 ppm or ± 5.99 × 10-6 oz-force/oz.  These tolerance limits represent a 

coverage factor of k = 2 and the associated error distribution is characterized by the normal 

distribution.   

 

F.2.3  Digital Resolution (res) 

As previously stated, the digital display resolution of the Chatillon force gauge is specified as 

0.005 oz-force.  Therefore, the resolution error limits are ± 0.0025 oz-force (i.e.,  ± half the 

resolution).  These limits represent 100% containment limits for a uniformly distributed error 

source. 
 

F.2.4  Repeatability (rep) 

The calibration process for electronic force gauges like the Chatillon model DGGS unit does not 

include steps for obtaining repeat measurements.  A special test was conducted on a similar force 

gage to assess the repeatability associated with the calibration equipment, laboratory 

environmental conditions and other procedural steps.  Ten repeat measurements were made at 

four different applied force values.  The resulting data are listed in Table F-4.   

 

The data indicate that any variation in the force gauge readings is less than the display resolution.  

Therefore, repeatability is not included as a source of uncertainty for this analysis. 

                                                 
85 Wyle Calibration Data Sheet M59578_11Jun08. 
86 NIST Handbook 105-1, Specifications and Tolerances for Reference Standards and Field Standard Weights and Measures, 1. 

Specifications and Tolerances for Field Standard Weights (NIST Class F).  
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Table F-4.  Repeatability Data for DFGS-2 Force Gage87 

Nominal Mass (lb) 0.0000 0.4000 1.2000 2.0000 

Nominal Force (lbf) 0.0000 0.3994 1.1981 1.9968 

Run 1 UUT Reading 0.000 0.399 1.198 1.995 

Run 2 UUT Reading 0.000 0.399 1.197 1.995 

Run 3 UUT Reading 0.000 0.399 1.197 1.995 

Run 4 UUT Reading 0.000 0.399 1.197 1.995 

Run 5 UUT Reading 0.000 0.399 1.197 1.995 

Run 6 UUT Reading 0.000 0.399 1.197 1.995 

Run 7 UUT Reading 0.000 0.399 1.197 1.995 

Run 8 UUT Reading 0.000 0.399 1.197 1.995 

Run 9 UUT Reading 0.000 0.399 1.197 1.995 

Run 10 UUT Reading 0.000 0.399 1.197 1.995 

Average UUT Reading 0.000 0.399 1.197 1.995 

Standard Deviation of UUT 

Reading 
0.000 0.000 0.000 0.000 

 

The revised error model for the force gauge calibration is given in equation (F-9).  

 

 cal resm m cf cfc c         (F-9) 

 

Applying the variance operator to equation (F-9) gives 
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c c

   

    

   

  

   

 

 (F-10) 

 

where cov() terms account for the covariance between pairs of error sources.  Covariance is a 

statistical assessment of the mutual dependence of the errors.  The covariances can have 

inconvenient physical dimensions, so the correlation coefficient is often used instead.  For 

example, the correlation coefficient for m  and cf  is defined as 

 

 
cov( , )m cf

m cf
m cf

u u
 

 

 
   (F-11) 

 

where 
m

u  and 
cf

u  are the uncertainties in m  and cf , respectively.  Therefore, equation (F-

10) can be expressed as 

 

                                                 
87 Repeatability data for Chatillon Model DFGS-2 Digital Force Gage. 
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       2 2var var var varcal resm cf m mcf cf

m res m res res rescf cf

m cf m cf

m cf

c c c c u u

c u u c u u

   

       

    

 

   

 
 (F-12)   

 

There are no correlations between error sources, so equation (F-12) can be simplified. 

 

        2 2var var var varcal resm cfm cfc c       (F-13) 

 

The variance terms in equation (F-13) are equivalent to the square of the uncertainty in the 

corresponding error (e.g., 2var( )
mm u  ).  So, the uncertainty equation for  can be rewritten in 

terms of the individual measurement process uncertainties and their associated sensitivity 

coefficients. 

 

 
2 2 2 2 2

m cf res
m cfu c u c u u   

    (F-14) 

 

The partial derivative equations used to compute the sensitivity coefficients are listed below.  

 

m

F
c cf

m


 


  cf

F
c m

cf


 


 

   

The measurement process uncertainties are estimated from the specification limits, containment 

probability (i.e., confidence level) and the inverse error distribution function. 

 

The force gauge digital resolution uncertainty is estimated using ± 0.0025 oz-force error limits, 

the inverse uniform distribution function and a 1.00 containment probability (100% confidence 

level). 

0.0025 oz-force 0.0025 oz-force
0.00144 oz-force.

1.7323
resu     

 

The uncertainty in the conversion coefficient is estimated using the expanded uncertainty limits, 

the inverse normal distribution function, -1, and a 0.9545 containment probability (95.45% 

confidence level). 

 

6 6

6

1

ozf ozf
5.99 10 5.99 10

ozfoz oz 2.995 10
1 0.9545 2.000 oz

2

cfu

 





 
   

 
  

 

 

 

Note:  The digital resolution and conversion factor uncertainties do not change 

over the range of applied masses.   

 

The uncertainty in the applied mass is based on the combined weight standards used and their 

associated tolerance limits.  The uncertainty for an applied mass of 1.6 oz is computed for 



 

208 

illustration purposes.  Three weight set masses are used: 1 oz, 0.5 oz and 0.1 oz.  From Table F-

3, the total tolerance limits for the 1.6 oz applied mass are 

 

± Lm = ± (0.00005 + 0.00010 + 0.00019) oz = ± 0.00034 oz. 

 

The uncertainty in the applied mass is estimated using the inverse normal distribution function 

and a 0.95 containment probability (95% confidence level).  The uncertainty due to the error in 

the 1.6 oz applied mass is estimated to be 

 

1

0.00034 oz-force 0.00034 oz-force
0.000173oz-force

1 0.95 1.9600

2

mu


  
 

  
 

 

 

The estimated uncertainties and sensitivity coefficients for each parameter are summarized in 

Table F-5.  The component uncertainties are the product of the standard uncertainty and the 

sensitivity coefficient.   

 

Table F-5.  Estimated Uncertainties for Force Gauge Calibration at Applied Mass = 1.6 oz 

Error  

Source 
 Error 

Limits 

Conf. 

Level 

Standard 

Uncertainty 

Sensitivity  

Coefficient 

Component 

Uncertainty 

m  0.00034 oz 95 0.000173 oz 0.998383 ozf/oz 0.000173 ozf 

cf  5.99×10-6 ozf/oz 95.45 2.995×10-6 ozf/oz 1.6 oz 4.792×10-6 ozf 

res  0.0025 ozf 100 0.00144 ozf 1 0.00144 ozf 

 

The uncertainty in  is computed by taking the root sum square of the component uncertainties. 

 

     
22 26

6 2

0.000173 ozf 4.792 10 ozf 0.00144 ozf

2.1036 10 ozf 0.00145 ozf

u




   

  

 

 

The pareto chart, shown in Figure F-1, indicates that the force gauge digital resolution is the 

largest contributor to the combined uncertainty.  The uncertainties due to the weight standards 

and conversion factor provide much less contribution to the combined uncertainty. 

 

 

Figure F-1.  Pareto Chart for Force Gauge Calibration Uncertainty 

0 20 40 60 80 100

Digital Resolution, res

Applied Mass, m

Conversion Factor, cf

Percent Contribution to Force Gauge Uncertainty
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The Welch-Satterthwaite formula is used to compute the degrees of freedom for u.   
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 (F-15) 

 

The degrees of freedom for all of the process uncertainties are infinite, so the combined 

uncertainty also has infinite degrees of freedom. 

 

The uncertainty estimates for the tension mode and compression mode calibration data are listed 

in Tables F-6 and F-7, respectively.  

 

Table F-6.  Uncertainty Estimates for Tension Mode Calibration Data 

 

Applied 

Mass 

(oz) 

 

Applied 

Force 

(ozf) 

Force Gauge 

Reading 

Average 

(ozf) 

Measured 

Difference 

  
(ozf) 

Standard 

Uncertainty 

u 

(ozf) 

 

Degrees 

of  

Freedom 

Force Gauge 

Specification 

Limits 

(ozf) 

0.0000 0.0000 0.000 0.0000 0.00144  ± 0.017 

1.6000 1.5974 1.598 0.0001 0.00145  ± 0.017 

3.2000 3.1948 3.195 0.0002 0.00148  ± 0.017 

4.8000 4.7922 4.793 0.0003 0.00153  ± 0.017 

6.4000 6.3897 6.388 -0.0022 0.00160  ± 0.017 

8.0000 7.9871 7.985 -0.0021 0.00167  ± 0.017 

 

Table F-7.  Uncertainty Estimates for Compression Mode Calibration Data 

 

Applied 

Mass 

(oz) 

 

Applied 

Force 

(ozf) 

Force Gauge 

Reading 

Average 

(ozf) 

Measured 

Difference 

  
(ozf) 

Standard 

Uncertainty 

u 

(ozf) 

 

Degrees 

of  

Freedom 

Force Gauge 

Specification 

Limits 

(ozf) 

0.0000 0.0000 0.000 0.0000 0.00144  ± 0.017 

1.6000 1.5974 1.595 -0.0024 0.00145  ± 0.017 

3.2000 3.1948 3.195 0.0002 0.00148  ± 0.017 

4.8000 4.7922 4.790 -0.0022 0.00153  ± 0.017 

6.4000 6.3897 6.385 -0.0047 0.00160  ± 0.017 

8.0000 7.9871 7.985 -0.0021 0.00167  ± 0.017 

 

F.3 In-tolerance Probability 

As previously discussed, the probability that the UUT bias is in-tolerance is based on the 

calibration result and its associated uncertainty.  The largest value of  is -0.0047 oz-force with 

an associated uncertainty of 0.00160 oz-force.  This value is an estimate of the bias, eUUT,b, in the 

force gauge reading for an applied force of 6.3897 oz-force at the time of calibration.   

 

Figure 2 shows the UUT,b probability distribution for the population of Chatillon Model DGGS-

250G force gauges.  The spread of the distribution is based on the manufacturer specified 
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tolerance limits of  ± 0.017 oz-force.  The calibration result, 0.0047ozf   , is depicted along 

with black bars showing 95% confidence limits computed from 

 

 / 2,t u      (F-16) 

 

where t/2, is the t-statistic,   = p/2,  p is the confidence level and  is the degrees of freedom 

for u .  For a 95% confidence level, t0.025, = 1.9600 and the confidence limits are computed to 

be 

 

0.0047 ozf 1.96 0.00160 ozf    or 0.0047 ozf 0.0031 ozf  . 

 

This means that, while the value of UUT,b is unknown, there is a 95% confidence level that it is 

contained within the limits of 0.0047 ozf 0.0031 ozf  .   

 

 

Figure F-2.  Force Gauge Bias Distribution 

 

The probability that UUT,b falls outside of the manufacturer specification limits is basically zero.  

So, the UUT can be considered to be in-tolerance over the calibrated force range.   

 

- 0.017 ozf + 0.017 ozf

- 0.0047 ozf

f(UUT,b)

UUT,b


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APPENDIX G – SPECTRUM ANALYZER ANALYSIS 
EXAMPLE 
 

The purpose of this analysis is to estimate and report the uncertainty in the minimum and 

maximum values of the relative flatness error of a spectrum analyzer that is calibrated over a 

frequency range of 50 MHz to 3.0 GHz.   

 

G.1 Measurement Process Overview 

The frequency response performance parameter of an Agilent E4440A Spectrum Analyzer is 

calibrated using an Agilent 5701B Signal Generator, Agilent 438A Power Meter, Agilent 

11667B Power Divider, and Agilent 8485A Power Sensor, as shown in Figure G-1.   

 

 

Figure G-1.  Spectrum Analyzer Calibration Setup 

 

The maximum frequency response error for the unit under test (UUT) spectrum analyzer is 

specified relative to the frequency response at 50 MHz.   As shown in Table 1, the maximum 

relative error varies for different frequency ranges.  Agilent reports that these maximum relative 

error limits correspond to a 10 dB input attenuation (i.e., - 10 dB) and 20 C to 30 C 

environmental operating temperature range. 

 

Table G-1.  Frequency Response Specifications for Agilent E4440A88 

Frequency 

Range 

Max. Error Relative to 

50 MHz Response 

3 Hz to 3.0 GHz  0.38 dB 

3.0 GHz to 6.6 GHzb  1.50 dB 

6.6 GHz to 13.2 GHzb  2.00 dB 

13.2 GHz to 22.0 GHzb  2.00 dB 

22.0 GHz to 26.5 GHzb  2.50 dB 

                                                 
88 Specifications Guide for  PSA Series Spectrum Analyzers, Manufacturing Part Number E4440-90606, Printed in USA April 

2009, Agilent Technologies, Inc. 

HP E4440A

UUT

HP 8485A

HP 11667B

HP 438A

Measurement 

Reference
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 b.  Preselector centering applied. 

 

The frequency response of the UUT is essentially an amplitude flatness specification for a given 

frequency range.  The flatness error is defined as89 

 

 
BUUT PMflat A A    (G-1) 

where 

 

 UUTA   =  UUT amplitude measurement at calibration frequency 

 
BPMA   =  Power meter amplitude measurement at calibration frequency 

 

The calibration procedure calls for a nominal power input of -10 dBm (0.1 mW) to be supplied to 

the UUT.90  As shown in Figure G-1, this is achieved by splitting the signal generator power 

output to the UUT and the power sensor/power meter.  The flatness error is then computed at 

selected frequencies within a range (e.g., 3 Hz to 3 GHz).   

 

The power splitter is initially characterized using an Agilent 8482A as a reference power sensor, 

as shown in Figure G-2.  The reference power sensor is connected to Channel A of the power 

meter and the Agilent 8485A sensor power is connected to Channel B.   

 

 

Figure G-2.  Power Splitter Characterization Setup 

 

The splitter tracking error is computed from equation (G-2). 

 

 
A BPM PMsplit A A    (G-2) 

where 

 

                                                 
89 Instrument Messages and Functional Tests for PSA Series Spectrum Analyzers and ESA Series Spectrum Analyzers, 

Manufacturing Part Number E4440-90619, Printed in USA June 2008, Agilent Technologies, Inc. 

 
90 Need reference information for Agilent E4440A Spectrum Analyzer Performance Verification Tests Frequency Response. 

HP E4440A

HP 8485A

HP 11667B

HP 438A

HP 8482A
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APMA  =  Power meter Channel A measurement 

 
BPMA   =  Power meter Channel B measurement  

 

The flatness error equation is then modified to account for the splitter tracker error. 

 

 
BUUT PMflat splitA A     (G-3)  

  

The relative flatness error at a given test or calibration frequency is defined as 

 

 
50MHzrelflat flat flat     (G-4) 

where 

 

 
50MHzflat  =  flatness error at 50 MHz frequency 

 

The minimum and maximum values of 
relflat  are recorded for the calibration frequency range  

and compared to the frequency response specification limits.91  If either value of 
relflat  falls 

outside of these limits, then the UUT is typically deemed to be out-of-tolerance (OOT) or 

noncompliant.  However, errors in the calibration process can result in an incorrect OOT 

assessment (false-reject) or in-tolerance assessment (false-accept).   

 

The relationship between the calibration result, 
relflat , and the true UUT bias, eUUT,b, is 

generally expressed as 

 

 ,rel UUT bflat cale    (G-5) 

 

where cal is the calibration error. 

 

The probability that the UUT frequency response parameter is in-tolerance is based on the 

calibration result and its associated uncertainty.  Therefore, all relevant calibration error sources 

must be identified and combined in a way that yields viable uncertainty estimates. 

 

G.2  Uncertainty Analysis Procedure 

The purpose of this analysis is to estimate and report the total uncertainty in the minimum and 

maximum values of 
relflat  observed for a calibration frequency range of 50 MHz to 3.0 GHz.  

The calibration results are summarized in Table G-2. 

 

Table G-2.  Relative Flatness Error for 50 MHz to 3 GHz Range 

 

relflat  

(dB) 

Specification  

Limits 

(dB) 
relflat a 

(W) 

Specification  

Limits 

(W) 

Minimum 0.13  0.38 3.04 + 9.14 

                                                 
91 Since the tolerance limits constitute the maximum permissible deviation or difference, they should be expressed in units that 

are consistent with those measured during calibration.  
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- 8.38 

Maximum 0.32  0.38 7.65 
+ 9.14 

- 8.38 

 a. Input Power = 0.1 mW 

 

The uncertainty in 
relflat  is determined by applying the variance operator to equation (G-5) and 

taking the square root. 

 

 
   

 

,var var

var

flatrel rel UUT bflat cal

cal

u e  



  



 (G-6) 

 

Given the equipment and procedures used, the calibration error equation is 

  

 , Bcal UUT res PM PSsplit           (G-7) 

where 

 
A B

2PS PS PMsplit       (G-8) 

 

 , ,PM PM b PM res     (G-9) 

and 

 UUT,res = UUT resolution error    

 
APS  = Channel A power sensor bias 

 
BPS  = Channel B power sensor bias 

 ,PM b  = Power meter bias 

 ,PM res  = Power meter resolution error 

  

Note:  During the power splitter characterization, the two power sensors are 

connected to different power meter channels.  Consequently, the power meter 

error contributes to the error in split  via the Channel A power and Channel B 

power measurements, as depicted in equation (G-8). 

 

Substituting equations (G-8) and (G-9) into (G-7), the calibration error equation becomes 

 

  , , ,A B
2 3 3cal UUT res PS PS PM b PM res           (G-10) 

 

Brief descriptions of the calibration process errors are provided in the following subsections. 

 

G.2.1  UUT Resolution Error (UUT,res) 

The Agilent E4440A Spectrum Analyzer has a digital display resolution of 0.01 dB or  1% of 

the input signal level.92  Therefore, the resolution error limits in dB units are ± 0.005 dB (i.e., ± 

                                                 
92  Specifications Guide for  PSA Series Spectrum Analyzers, Manufacturing Part Number E4440-90606, Printed in USA April 

2009, Agilent Technologies, Inc. 
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half the resolution).  The resolution error limits in mW units are computed to be 

 

1 0.1mW
= 0.0005mW = 0.5μW

100 2
      

 

These limits represent 100% containment limits for a uniformly distributed error. 

 

G.2.2  Channel A Power Sensor Bias (
APS ) 

During the power splitter characterization, the HP8482A power sensor is connected to the power 

meter Channel A.  The most recent calibration data sheet93 for this power sensor states an 

expanded uncertainty of ± 0.99 % of the sensed power for a frequency range of 50 MHz to 3 

GHz.  The expanded uncertainty limits are assumed to represent a coverage factor of k = 2. 

 

G.2.3  Channel B Power Sensor Bias (
BPS ) 

The HP8485A power sensor is connected to  the power meter Channel B for both the power 

splitter characterization and the UUT frequency response calibration.  The most recent 

calibration data sheet94 for this power sensor states an expanded uncertainty of ± 1.75 % of the 

sensed power for a frequency range or 50 MHz to 3 GHz.  The expanded uncertainty limits are 

assumed to represent a coverage factor of k = 2. 

 

G.2.4  Power Meter Error ( ,PM b and ,PM res ) 

The Agilent 438A power meter is a microprocessor controlled dual channel meter that is used in 

conjunction with an Agilent 8480 series power sensor to measure power ranging from -70 to +44 

dBm (100 pW to 25 W) for a frequency range of 100 kHz to 26.5 GHz . 

 

The accuracy limits for the 438A power meter are specified to be ± 0.02 dB (single channel 

mode).  The accuracy limits in W units are computed to be 

 

  
 

0.02 /10
10 0.1mW 0.1mW

= 1.00462 0.1mW 0.1mW

= 0.000462 mW = 0.462μW

   

  

 

 

 

The accuracy limits are assumed to represent 95% confidence limits for a normally distributed 

error.   

 

The digital display resolution is specified to be 0.1% full scale.  The resolution error limits for 

the 0.01 to 0.1mW range are computed to be 

 

0.1 0.1mW

100 2

= 0.00005mW = 0.05μW

  

 

 

                                                 
93 Wyle Laboratories Calibration Data Sheet Number M78587-20May08, Model 8482A, Serial Number US37294071. 

94 Wyle Report of Test Number 7.54389.04, Model 8485A, Serial Number 2703A05070, September 5, 2008. 
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The resolution limits represent 100% containment limits for a uniformly distributed error. 

 

Applying the variance operator to equation (G-10), gives 

 

 

   
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, , ,A B

, , , ,A B

, , A B A

var var 2 3 3

var var 4 var 9 var 9 var

2 cov , 4 cov , 6cov ,

6cov , 4 cov , 6cov ,

cal UUT res PS PS PM b PM res

UUT res PS PS PM b PM res

UUT res PS UUT res PS UUT res PM b

UUT res PM res PS PS PS PM

     

    

     

     

    

    

  

    

     
 

,

, , ,A B B

, ,

6cov , 12 cov , 12 cov ,

18cov ,

b

PS PM res PS PM b PS PM res

PM b PM res

     

 

  



 (G-11) 

 

where the cov() terms account for the covariance between pairs of error sources.  Covariance is a 

statistical assessment of the mutual dependence of the errors.  The covariance terms can have 

inconvenient physical dimensions, so the correlation coefficient is often used instead.  For 

example, the correlation coefficient for ,UUT res  and
APS  is defined as 

 

 

,

, A

, A

A

cov ,

UUT res

UUT res PS

UUT res PS

PS
u u

 
 

 
   

 

where 
,UUT res

u  and 
APS

u  are the uncertainties in  ,UUT res  and
APS , respectively.  Therefore, 

equation (G-11) can be expressed as 

 

 

           , , ,A B

, , , ,A A B B

, . , , , . , ,

A B

, ,

, ,

,

var var var 4 var 9 var 9 var

2 4

6 6

4

cal UUT res PS PS PM b PM res

UUT res PS UUT res PS UUT res PS UUT res PS

UUT res PM b UUT res PM b UUT res PM res UUT res PM res

PS PS

u u u u

u u u u

u

       

       

  

     

 

 



    

 
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
, ,A B A A

, , , ,A A B B

, , , , , ,B B

,

, ,

, ,

6

6 12

12 18

PS PS PS PM b PS PM b

PS PM res PS PM res PS PM b PS PM b

PS PM res PS PM res PM b PM res PM b PM res

u u u

u u u u

u u u u

    

       

       



 

 



 

 

 (G-12)   

 

There are no correlations between error sources, so equation (G-12) can be simplified to 

 

            , , ,A B
var var var 4 var 9 var 9 varcal UUT res PS PS PM b PM res           (G-13) 

 

The variance terms in equation (G-13) are equivalent to the square of the uncertainty in the 

corresponding error (e.g., 
A A

2var( )
PSPS u  ).  So, the uncertainty equation for 

relflat can be 
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rewritten in terms of the individual measurement process uncertainties and their associated 

sensitivity coefficients. 

 

  

 

, , ,A B

2 2 2 2 2

var

4 9 9

calflatrel

UUT res PS PS PM b PM res

u

u u u u u



    



    
 (G-14) 

   

The spectrum analyzer digital resolution uncertainty is estimated using the ± 0.5 W error limits, 

the inverse uniform distribution function and a 1.00 containment probability (100% confidence 

level). 

,

0.5 μW 0.5 μW
0.29 μW

1.7323UUT res
u     

 

The Channel A power sensor bias uncertainty is estimated using the expanded uncertainty of ± 

0.99% of the sensed power, a sensed power of 0.1 mW and k = 2 coverage factor.   

 

A

0.99
0.1mW

0.00099 mW 0.99μW100 0.495μW
2 2 2PS

u



     

 

The Channel B power sensor bias uncertainty is estimated using the ± 1.75% expanded 

uncertainty, the sensed power = 0.1 mW and k = 2 coverage factor. 

 

B

1.75
0.1mW

0.00175mW 1.75μW100 0.875μW
2 2 2PS

u



     

 

The power meter bias uncertainty is estimated using the ± 0.462 W error limits, the inverse 

normal distribution function and a 0.95 containment probability (95% confidence level).   

 

,
1

0.462μW 0.462μW
0.236μW

1 0.95 1.9600

2

PM b
u



  
 

  
 

 

 

The power meter digital resolution uncertainty is estimated using the ± 0.05 W error limits, the 

inverse uniform distribution function and a 1.00 containment probability (100% confidence 

level). 

 

,

0.05 μW 0.05 μW
0.029 μW

1.7323PM res
u     

 

The estimated uncertainties and sensitivity coefficients for each error source are summarized in 

Table G-3.  The component uncertainties are the product of the standard uncertainty and the 

sensitivity coefficient.   
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Table G-3.  Estimated Uncertainties for Agilent E4440A Frequency Response Calibration 

Error  

Source 
 Error 

Limits 

Conf. 

Level 

Standard 

Uncertainty 

Deg. 

Freedom 

Sensitivity  

Coefficient 

Component 

Uncertainty 

,UUT res  ± 0.5 W 100 0.29 W  1 0.29 W 

APS  ± 0.99 W 95.45 0.495 W  1 0.495 W 

BPS   1.75 W 95.45 0.875 W  2 1.75 W 

,PM b   0.462 W 95 0.236 W  3 0.708 W 

,PM res  ± 0.05 W 100 0.029 W  3 0.087 W 

 

The uncertainty in 
relflat  is computed by taking the root sum square of the component 

uncertainties. 

 

         
2 2 2 2 2

0.29μW 0.495μW 1.75μW 0.708μW 0.087μW

0.084 0.245 3.063 0.501 0.0076 μW

= 3.900 μW 

= 1.975μW

flatrel
u     

      

 

The pareto chart, shown in Figure G-3, indicates that the Channel B power sensor bias 

uncertainty is the largest contributor to the uncertainty in the UUT relative flatness error.   

 

 

Figure G-3.  Pareto Chart for UUT Frequency Response Calibration 

 

The Welch-Satterthwaite formula given in equation (G-15) is used to compute the degrees of 

freedom for 
flatrel

u .  The degrees of freedom for all of the process uncertainties are infinite, so 

the uncertainty in the relative flatness error also has infinite degrees of freedom. 

 

Percent Contribution to

0 10 20 30 40 50 60

flatrel
u

BPS

APS

,PM b

,PM res

,UUT res

Channel B Power Sensor Bias,

Power Meter Bias,

Channel A Power Sensor Bias,

Spectrum Analyzer Resolution,
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         , , ,

4 44 4 4

A B

4

2 3 3
flatrel

flatrel

UUT res PM b PM resPS PS

u

u

u uu u u




   

 

   
    

 (G-15) 

 

The uncertainties for the minimum and maximum values of 
flatrel

u are summarized in Table  

G-4.  

 

Table G-4.  Estimated Uncertainties for Relative Flatness Error (50 MHz to 3 GHz) 

 

relflat  

(dB) 

relflat  

(W) 

flatrel
u  

(W) 

Specification  

Limits 

(W) 

Minimum 0.13 3.04 1.975 
+ 9.14 

- 8.38 

Maximum 0.32 7.65 1.975 
+ 9.14 

- 8.38 

 

G.3  In-tolerance Probability 

As previously discussed, the probability that the bias in the UUT frequency response parameter, 

UUT,b, is in-tolerance is based on the calibration result and its associated uncertainty.  The 

maximum relative flatness error was determined to be 7.65 W.  This value is an estimate of 

eUUT,b, at the time of calibration.   

 

Figure G-4 shows the probability distribution for eUUT,b.   The spread of the distribution is based 

on the specified tolerance limits of + 9.144 W and – 8.378 W for Agilent E4440A Spectrum 

Analyzers.   

 

 

Figure G-4.  Bias Distribution for UUT Frequency Response 

 

Given the maximum value of 
relflat  observed during calibration, it appears that the UUT 

frequency response parameter is in-tolerance.  However, because of the uncertainty in 
relflat , 

the actual bias in the UUT frequency response parameter, UUT,b, may be larger or smaller than 

7.65 W. 

- 8.38 W

7.65 W

f(UUT,b)

UUT,b

+ 9.14 W

relflat

0
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The confidence limits for UUT,b can be expressed as 

 

 / 2,rel flatrel
flat t u      (G-16) 

 

where t/2, is the t-statistic,   = p/2,  p is the confidence level and  is the degrees of freedom 

for 
flatrel

u . 

 

For a 95% confidence level, t0.025, = 1.9600 and the confidence limits for eUUT,b are computed to 

be 

 

7.65 μW 1.96 1.975 μW   or 7.65 μW 3.87 μW . 

 

This means that, while the value of UUT,b is unknown, there is a 95% confidence that it is 

contained within the limits of 7.65 μW 3.87 μW .    

 

Figure G-5 shows the probability distribution for UUT,b given the calibration result 
relflat = 7.65 

W.  The black bar depicts the  3.87 W confidence limits.  Given the relatively large 

uncertainty in 
relflat , the in-tolerance probability of UUT,b appears to be significantly reduced.  

 

 

Figure G-5.  OOT Probability of UUT Frequency Response  

 

Bayesian analysis methods are employed to estimate the true value of UUT,b and compute the in-

tolerance probability based on a priori knowledge and on measurement results obtained during 

calibration.95 

 

Prior to calibration, the uncertainty, 
,UUT b

u , is estimated from the in-inverse probability 

distribution for UUT,b, the specification limits and the associated a priori in-tolerance probability.  

In this analysis, two underlying assumptions are employed: 

 

                                                 
95  An in-depth coverage of the methods and principles used to compute in-tolerance probability are provided in NASA 

Measurement Quality Assurance Handbook, Annex 4 – Estimation and Evaluation of Measurement Decision Risk. 

- 8.38 W

7.65 W

f(UUT,bflatrel
)

UUT,b

+ 9.14 W

relflat

0

- 8.38 W

7.65 W

f(UUT,bflatrel
)

UUT,b

+ 9.14 W

relflat

0
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1. UUT,b is assumed to be normally distributed. 

2.  The asymmetric tolerance limits +L1 and – L2 are a prior 95% confidence limits.    

 

Since L1  L2, the value of 
,UUT b

u  is computed by solving equation (G-17) through numerical 

iteration. 

 

 

, ,

1 2( ) 1

UUT b UUT b

a
L L

P in
u u 

   
      
   
   

 (G-17) 

 

where Pa(in) is the a priori in-tolerance probability of 95% and  is the normal distribution 

function.  

 

A value of 
,UUT b

u = 4.45 W was computed off-line using an uncertainty analysis software 

program.  This bias uncertainty estimate is equivalent to the standard deviation of the probability 

distribution for the population shown in Figure G-4.   

 

After calibration, the values of 
,UUT b

u , 
relflat and 

flatrel
u  are used to estimate the true value of 

UUT,b. This value is denoted  and computed from equation (G-18).  

 

  
,

,

2

2 2

UUT b

rel

UUT b flatrel

flat

u

u u



 

  


 (G-18) 

 

The Bayesian estimate, , will be less than or equal to the calibration result, 
relflat .  For 

example, if the values of 
,UUT b

u  and 
flatrel

u  are equal, then / 2
relflat  .  Conversely if 

flatrel
u  is much smaller than 

,UUT b
u , then 

relflat  .  From equation (G-18), the estimated true 

value of UUT,b is computed to be 

 
2

2 2

2

2

(4.45 μW)
7.65 μW

(4.45 μW) (1.975 μW)

19.80 μW
= 7.65 μW = 0.835 7.65 μW= 6.39 μW.

23.70 μW

  


 

 

 

This minor reduction in the UUT bias estimate reflects the fact that the calibration uncertainty is 

much smaller than the UUT bias uncertainty that is expected from the manufacturer specification 

limits.  Therefore, the observed 7.65 W deviation is considered to be mainly attributable to the 

UUT parameter bias. 

 

The uncertainty in the Bayesian estimate  is computed from equation (G-19). 
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,

,

2 2

UUT b

flatrel

UUT b flatrel

u
u u

u u


 

 

 



 (G-19) 

 

The uncertainty in  is computed to be 

 

2 2

4.45 μW
1.975 μW

(4.45 μW) (1.975 μW)

4.45 μW
= 1.975 μW = 0.914 1.975 μW = 1.805 μW.

4.87 μW

u  



 

 

 

Finally, the post-calibration in-tolerance probability for UUT,b is computed from equation (G-20). 

 

 1 2( ) 1
L L

P in
u u 

     
      

   
   

 (G-20) 

 

The probability that the UUT frequency response (i.e., relative flatness error) is in-tolerance 

during calibration is computed to be 

 

   

8.38μW 6.39μW 9.14μW 6.39μW
( ) 1

1.805μW 1.805μW

14.77 2.75
1 8.183 0.936 1

1.805 1.805

1.000 0.936 1 0.936 or 93.6%.

P in
    

       
   

   
           

   

   

 

 

The resulting in-tolerance probability reflects the revised UUT,b estimate and its associated 

uncertainty.  Figure G-6 shows the value of  with black bars that depict 95% confidence limits 

equal to  1.96  1.805 W or  3.54 W. 

 

 

Figure G-6.  Bayesian UUT Parameter Bias Estimate  

- 8.38 W

f(UUT,b)

UUT,b

+ 9.14 W

0 6.39 W


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APPENDIX H – ROTAMETER ANALYSIS EXAMPLE 
 

The purpose of the rotameter uncertainty analysis is to 
  

1. Estimate the uncertainties in gas flow rates used in the calibration of the 

rotameter.  

2. Use these uncertainties in the establishment of the rotameter regression equation 

(i.e., calibration curve). 

3. Estimate the uncertainties in flow rates predicted from the rotameter regression 

equation.    

 

H.1 Measurement Process Overview 

A Brooks model 1110 Series rotameter is calibrated with nitrogen gas using a Sierra Instruments 

Series 101 Cal-Bench as the measurement reference, as shown in Figure H-1.  The temperature 

and pressure of the gas exiting the rotameter are measured with a Rosemount model 162C 

platinum resistance thermometer (PRT) and a Wallace & Tiernan FA-139 Precision Aneroid 

Barometer, respectively.   

 

 

Figure H-1.  Rotameter Calibration Setup 

 

The rotameter scale readings at the center of the steel ball are collected for six flow rates.  The 

measurement reference flow rates are corrected for the outlet gas pressure and temperature using 

equation (H-1). 
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1/ 2

std out
corr ref

out std

P T
R R

P T

 
   

 
 (H-1)  

where  

 Rref = measurement reference mass flow rate in standard cubic centimeters per  

   minute (sccm) 

 Pout = outlet gas pressure, psia 

 Tout = outlet gas temperature, R 

 Pstd = standard pressure, 14.696 psia 

 Tstd =  standard temperature, 529.67 R   

 

The resulting calibration data are listed in Table H-1.  The primary purpose of the calibration is 

to establish a third-order polynomial regression equation using the corrected flow rates and 

corresponding rotameter scale readings.   

 

Table H-1.  Rotameter Calibration Data (Steel Ball)96 

UUT 

Rotameter 

Scale 

Reading 

Outlet 

Gas  

Pressure 

(psia) 

Outlet  

Gas 

Temperature 

(C)  

Measurement 

Reference 

Mass Flow Rate 

(sccm) 

Corrected  

Flow Rate 

(ccm) 

15.00 14.850 23.1   548.69   547.68 

30.00 14.850 23.1 1356.75 1354.25 

60.00 14.850 23.0 2937.12 2931.21 

90.00 14.855 22.9 4551.52 4540.84 

120.00 14.855 22.9 6227.96 6213.34 

150.00 14.860 22.6 7881.43 7857.62 

 

H.1.1 Regression Analysis 

In regression analysis, a trend line is fit to the observed data.  For example, a third-order 

regression equation is expressed as  

 

 
2 3

0 1 2 3ŷ b b x b x b x     (H-2) 

 

where ˆiy  is the predicted value (e.g., flow rate), x is the corresponding independent variable 

(e.g., rotameter scale reading) and b0, b1, b2 and b3 are the regression coefficients.  The 

regression coefficients are determined by minimizing the residual sum of squares (RSS).  

 

  
2

1

ˆ
k

i i i
i

RSS w y y


   (H-3) 

where  

 wi = weighting factor 

 yi = measured value 

 k = number of measured values used in regression analysis 

 

                                                 
96 Wyle Laboratories Calibration Data Sheet, Metrology Number Z56093, 27Feb08 
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The weighting factor wi is defined as 

 

 

2

i
i

w




 
  
 

 (H-4) 

 

where i is the uncertainty in yi and  

 

 2

2
1

1k

i i

k








 (H-5) 

  

Once the regression coefficients are determined, then the stage is set for predicting values of ˆiy  

given values of x.  Each predicted value also has an associated uncertainty that must be 

estimated. 

 

H.2 Uncertainty Analysis Procedure 

To estimate the uncertainty in the corrected flow rates listed in Table H-1, all relevant 

measurement process errors must be identified and combined in an appropriate manner.  

 

Given equation (H-1), the error equation for Rcorr is   
 

 R R R P P T Tcorr ref ref out out out out
c c c         (H-6) 

where 

 

 Rref
  =  error in the measurement reference flow rate 

  Pout
  =  error in the outlet gas pressure measurement 

 Tout
  =  error in the outlet gas temperature measurement 

 

The coefficients in equation (H-6) are sensitivity coefficients that determine the relative 

contributions of the error sources to the overall error in the corrected flow rate.  

 

The error in the measurement reference flow rate is comprised of errors due to the bias and 

resolution of the Sierra Instruments 101 Cal-Bench. 

 

  
, ,R R Rref ref b ref r

     (H-7) 

where 

 

 
,Rref b

  =  measurement reference bias 

 
,Rref r

  = measurement reference resolution 

 

Similarly, the error in the outlet gas pressure measurement is comprised of errors due to the bias 

and resolution of the Wallace & Tiernan FA-139 Precision Aneroid Barometer. 
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, ,out out b out rP P P     (H-8) 

where 

 

 
,out bP  =  barometer measurement bias 

 
,out rP  = barometer resolution error 

 

The error in the outlet gas temperature measurement is comprised of errors due to the bias and 

resolution of the Rosemount model 162C PRT. 

 

  
, ,out out b out rT T T     (H-9) 

where 

 
,out bT  =  PRT measurement bias 

 
,out rT  = PRT resolution error  

 

Substituting equations (H-7) through (H-9) into equation (H-6), the error equation for the 

corrected flow rate can be expressed as 

 

      , , , , , ,R R R R P Tcorr ref ref b ref r out out b out r out out b out rP P T Tc c c             (H-10)  

 

Brief descriptions of the measurement process errors are provided below. 

 

H.2.1  Measurement Reference Flow Rate (
,Rref b

  and 
,Rref r

 ) 

The most recent calibration report97 for the Sierra Instruments Series 101 Cal-Bench indicates an 

expanded uncertainty of ± 0.5% of reading.  The expanded uncertainty corresponds to coverage 

factor of k =2 .  In this analysis, the measurement reference bias is assumed to follow a normal 

distribution.  

 

The Series 101 Cal-Bench has a digital resolution of 0.001 sccm, so the resolution error limits 

are ± 0.0005 sccm (i.e., half the resolution).  The digital resolution error is uniformly distributed 

with error limits that represent 100% containment limits.   

 

H.2.2  Outlet Gas Pressure (
,out bP  and 

,out rP ) 

The Wallace & Tiernan FA-139 Precision Aneroid Barometer has a span of 13.75 to 15.25 psia  

(28 to 30 in Hg).  The accuracy specification of the barometer is ± 0.3% of full scale.98  In this 

analysis, the manufacturer specified accuracy is interpreted to be 

 

 
0.3

15.25 13.75 psia = 0.003 1.5psia = 0.0045psia
100

      . 

                                                 
97 Wyle Reference Standards Laboratory Report of Test Number 6.85331.02, June 24, 2008. 

98 Wallace & Tiernan Technical Data Sheet – Precision Aneroid Barometer, Types FA-112, FA-139, FA-160, FA-185, Cat. File 

610.100, Revised 7-89. 
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The bias in the barometer pressure is assumed to follow a normal distribution and the accuracy 

limits are assumed to represent 95% containment limits.   

 

The FA-139 barometer has an analog resolution of  0.005 psi (0.01 in Hg).  The resolution error 

limits are ± 0.0025 psi and are assumed to represent 95% containment (confidence) limits.  The 

analog resolution error is assumed to follow a normal distribution.  

 

H.2.3 Outlet Gas Temperature (
,out bT  and 

,out rT ) 

The Rosemount model 162C PRT has an accuracy of  ± 0.22 C and it’s output is read with an 

Instrulab RTD monitor that has a digital resolution of 0.01 C.99  The bias in the PRT 

temperature is assumed to follow a normal distribution.  The accuracy limits are assumed to 

correspond to 95% containment limits.   

 

The digital resolution error limits are ± 0.005 C.  The digital resolution error follows a uniform 

distribution with an associated 100% containment probability.   

 

H.2.4 Uncertainty in Rcorr 

The uncertainty in the corrected rate is equal to the square root of the distribution variance for 

Rcorr
 .   

 var( )
R corrcorr

Ru   (H-11) 

 

Applying the variance operator to equation (H-10), and noting that there are no correlations 

between error sources, gives 

 

      

     
, , ,

, , ,

2 2 2

2 2 2

var ( )

var var var

var var var

R corrcorr

R Rref b ref r out bref ref out

out r out b out rout out out

P

P T T

R

R R P

P T T

u

c c c

c c c

 

  

  



 



  

 (H-12) 

 

The variance terms in equation (H-12) are equivalent to the square of the uncertainty in the 

corresponding error (e.g., 
, ,

2var( )
ref b Rref b

R u  ).  So, equation (h-12) can be rewritten in terms of 

the individual measurement process uncertainties. 

 

 
, , , ,

, ,

2 2 2 2 2 2 2 2

2 2 2 2

ref R ref R out P out Pref b ref r out b out r

Rcorr

out T out Tout b out r

R R P P

T T

c u c u c u c u

u
c u c u

   



 

  


 

 (H-13) 

 

The partial derivative equations used to compute the sensitivity coefficients are given in 

                                                 
99 Wyle Reference Standards Laboratory Report of Test Number 6.85331.02, June 24, 2008. 



 

228 

equations (H-14) through (H-16).  

 

 

1/ 2

Rref
ref

corr std out

out std

R P T
c

R P T

 
   
  

  (H-14)   

 

 

1/ 2
3/ 21

2
Pout

out

corr std out
ref out

std

R P T
c R P

P T

  
     

  
 (H-15)  

 

 

1/ 2
1/ 21

2
Tout

out

corr std
ref out

out std

R P
c R T

T P T

 
    

  
 (H-16) 

 

The measurement process uncertainties are estimated from the specification limits, containment 

probability (confidence level) and the inverse error distribution function. 

 

The measurement reference bias uncertainty is estimated using the ± 0.5% or reading tolerance 

limits, the inverse normal distribution function, -1, and a 0.95 containment probability (95% 

confidence level).  The bias uncertainty in a measurement reference flow rate of 2937.12 sccm is 

computed for illustrative purposes. 

 

, 1

0.005 2937.12sccm 14.69sccm
7.49sccm

1 0.95 1.9600

2

Rref b
u




  

 
  

 

 

 

The measurement reference digital resolution uncertainty is estimated using the ± 0.0005 sccm 

tolerance limits, the inverse uniform distribution function and a 1.00 containment probability 

(100% confidence level). 

 

,

40.0005 sccm 0.0005 sccm
2.89 10 sccm

1.7323Rref r
u

     

 

The barometer bias uncertainty is estimated using the ± 0.0045 psia tolerance limits, the inverse 

normal distribution function, -1, and a 0.95 containment probability (95% confidence level).  

 

, 1

0.0045psia 0.0045psia
0.0023psia

1 0.95 1.9600

2

Pout b
u



  
 

  
 

 

 

The barometer resolution uncertainty is estimated using the ± 0.0025 psia tolerance limits, the 

inverse normal distribution function, -1, and a 0.95 containment probability (95% confidence 

level).  
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, 1

0.0025psia 0.0025psia
0.0013psia

1 0.95 1.9600

2

Pout r
u



  
 

  
 

 

 

The PRT bias uncertainty is estimated using the ± 0.22 C tolerance limits, the inverse normal 

distribution function, -1, and a 0.95 containment probability (95% confidence level).  

 

, 1

0.22 C 0.22 C
0.11 C

1 0.95 1.9600

2

Tout b
u



 
   

 
  

 

 

 

The PRT digital resolution uncertainty is estimated using the ± 0.005 C digital resolution limits, 

the inverse uniform distribution function and a 1.00 containment probability (100% confidence 

level). 

 

,

0.005 C 0.005 C
0.003 C

1.7323Tout r
u

 
     

 

The estimated measurement process uncertainties and sensitivity coefficients are summarized in 

Table H-2.  The component uncertainty is the product of the standard uncertainty and the 

sensitivity coefficient.  

 

Table H-2.  Measurement Process Uncertainties for Corrected Flow Rate = 2931.21 sccm 

Error  

Source 
 Error 

Limits 

Error 

Distribution 

Confid. 

Level 

Standard 

Uncertainty 

Sensitivity 

Coefficient 

Component 

Uncertainty 

,Rref b
u   14.69 sccm Normal 95 7.49 sccm 0.9980 7.47 sccm 

,Rref r
u   0.0005 sccm Uniform 100 2.89×10-4 sccm 0.9980 2.88×10-4 sccm 

,Pout b
u   0.0045 psia Normal 95 0.0023 psia - 98.71 sccm/psia 0.227 sccm 

,Pout r
u   0.0025 psia Normal 95 0.0013 psia - 98.71 sccm/psia 0.128 sccm 

,Tout b
u   0.22 C Normal 95 0.11 C 4.95 sccm/C 0.545 sccm 

,Tout r
u   0.005 C Uniform 100 0.003 C 4.95 sccm/C 0.015 sccm 

 

The uncertainty in Rcorr is computed by taking the root sum square of the component 

uncertainties. 

 

           
22 2 2 2 24

8 4

7.47 2.88 10 0.227 0.128 0.545 0.015 sccm

= 55.801 8.29 10 0.0515 0.0164 0.2970 2.25 10 sccm

56.166 sccm 7.49 sccm

Rcorr
u



 

      

      

 
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The Welch-Satterthwaite formula is used to compute the degrees of freedom for 
Rcorr

u .  
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 
 
 
 
  
 
  

 (H-17) 

 

The degrees of freedom for all of the process uncertainties are infinite.  Therefore, the degrees of 

freedom for 
Rcorr

u  are also infinite.   

 

The pareto chart, shown in Figure H-2, indicates that the measurement reference bias uncertainty 

is the largest contributor to the uncertainty in Rcorr.   

 

 

Figure H-2.  Pareto Chart for Corrected Flow Rate Uncertainty 

 

Uncertainty estimates for all of the corrected flow rate data are summarized in Table H-3. 

 

Table H-3.  Uncertainty Estimates for Corrected Measurement Reference Flow Rates 

UUT 

Rotameter 

Scale 

Reading 

Outlet 

Gas  

Pressure 

(psia) 

Outlet  

Gas 

Temperature 

(C)  

Measurement 

Reference 

Flow Rate 

(sccm) 

Corrected  

Flow Rate 

Rcorr 

(ccm) 

Standard 

Uncertainty 

Rcorr
u  

(ccm) 

Degrees  

of  

Freedom 

15.00 14.850 23.1   548.69   547.68 1.40  

30.00 14.850 23.1 1356.75 1354.25 3.47  

60.00 14.850 23.0 2937.12 2931.21 7.49  

90.00 14.855 22.9 4551.52 4540.84 11.62  

0 10 20 30 40 50 60 70 80 90 100

Cal-Bench Bias,

Gas Temperature Bias,

Gas Pressure Bias,

Gas Pressure Resolution,

Gas Temperature Resolution,

Cal-Bench Resolution,

Percent Contribution to Corrected Flow Rate Uncertainty
Rcorr

u

,ref b

,out bP

,out bT

,out bT

,out rP

,ref r
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UUT 

Rotameter 

Scale 

Reading 

Outlet 

Gas  

Pressure 

(psia) 

Outlet  

Gas 

Temperature 

(C)  

Measurement 

Reference 

Flow Rate 

(sccm) 

Corrected  

Flow Rate 

Rcorr 

(ccm) 

Standard 

Uncertainty 

Rcorr
u  

(ccm) 

Degrees  

of  

Freedom 

120.00 14.855 22.9 6227.96 6213.34 15.90  

150.00 14.860 22.6 7881.43 7857.62 20.11  

 

H.3 Predicted Flow Rate Uncertainty 

As previously discussed, the rotameter is calibrated to establish a third-order polynomial 

equation that can be used to predict gas flow rates.  Ideally, a weighted least squares regression 

analysis would be conducted to establish the appropriate equation coefficients.  The solution for 

the coefficients are estimated using the following matrix equation 

 

 b = (X′WX)-1 X′WY (H-18) 

where 
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k is the number of x data points and X′ is the transpose of X.  The weighting factor matrix W 

consists of the estimated uncertainties for the y measured values. 

 

In the absence of a dedicated regression analysis software program or a sophisticated statistical 

analysis package, a non-weighted regression fit is often obtained using a standard spreadsheet 

application. 

 

The non-weighted third-order polynomial equation obtained by applying the Microsoft Excel 

Add Trendline function for the corrected flow rate versus rotameter scale reading data is given 

in equation (H-19). 

 

 2 3218.667 51.325 0.022 0.000034calcR x x x      (H-19) 

where  

 Rcalc = calculated or predicted flow rate in cubic centimeter per minute (ccm) 

      x = rotameter scale reading 

 

The error equation for Rcalc is the sum of the corrected flow rate error and the regression fit error. 

 

 
calc corrR R reg     (H-20) 

 

The uncertainty in the calculated rate is equal to the square root of the distribution variance for 

Rcalc
 .   
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   var( ) var
R calc corrcalc

R R regu       (H-21) 

 

Noting that there are no correlations between the corrected flow rate and regression fit errors, the 

uncertainty in the calculated or predicted flow rate is computed from equation (H-22). 

 

     2 2var var
R corrcalc R regcorr

R regu u u  
      (H-22) 

 

The uncertainty due the regression fit is called the standard error of forecast.100  The standard 

error of forecast accounts for the fact that regression equation (H-19) was generated from a finite 

sample of data.  If another sample of data were collected, then a different regression equation 

would result.  The standard error or forecast considers the dispersion of various regression 

equations that would be generated from multiple sample sets around the true population 

regression equation.  The standard error of forecast is computed from 

 

  
1

, 1f y xs s


   x X W X x  (H-23)  

 

where sy,x is the standard error of estimate, x  is the transpose of x and   

 

 2

3

1

x

x

x

 
 
 

  
 
 
 

x  (H-24) 

 

The standard error of estimate is a measure of the difference between actual values and values 

estimated from a given regression equation.  The standard error of estimate is also defined as the 

standard deviation of the normal distributions of y for any given x.  The standard error of 

estimate is computed from 

 

 
 

 

2

,

ˆ

1
y x

y y
s

k m




 
 (H-25) 

 

where ŷ  is the predicted or calculated value and m is the order of the regression equation (i.e., m 

= 1, 2, 3 or higher).  A regression analysis that has a small standard error of estimate has data 

points that are very close to the regression line.  Conversely, a large standard error of estimate 

results when data points are widely dispersed around the regression line.  The degrees of freedom 

for sy,x is  

 

  
,

1
y xs k m     (H-26) 

 

The standard error of estimate for the flow rate equation (H-19) is computed to be 

                                                 
100 Hanke, J. et al: Statistical Decision Models for Management, Allyn and Bacon, Inc. 1984. 
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 

 

2

,

ˆ 676.73
ccm 338.37 ccm 18.4 ccm

3 1 6 4
y x

y y
s

k


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  
 

 

and the associated degrees of freedom are  

 

 
,

1 6 (3 1) 2
y xs k m         

 

The degrees of freedom for sf are equal to those for sy,x. 

 

The data used to compute the standard error of estimate are listed in Table H-4.  The standard 

error of forecast for each value of x is also listed.    

 

Table H-4.  Standard Error of Forecast for Regression Equation (H-19) 

 

 

Setting 
reg

u  equal to sf, the uncertainties in the calculated rates can now be computed using 

equation (H-22).  For example, the uncertainty in the calculated rate Rcal = 2933.01 ccm is  

 

   

2 2

2 2
7.49 23.3 ccm

= 598.99 ccm = 24.5ccm

Rcalc R regcorr

u u u  
 

   

 

The degrees of freedom for 
Rcalc

u  are computed using the Welch-Satterthwaite formula. 

 

Rotameter 

Scale 

Reading 

x 

Corrected  

Flow Rate 

y 

(ccm) 

Predicted or 

Calculated 

Flow Rate 

ŷ  

(ccm) 

ˆy y  

(ccm) 

 
2

ˆy y  

(ccm2) 

Standard 

Error of 

Forecast 

fs   

(ccm) 

Degrees  

of  

Freedom  

fs   

15.00   547.68  556.06       - 8.38     70.22 25.0 2 

30.00 1354.25 1340.05        14.2    201.64 22.1 2 

60.00 2931.21 2933.01        -1.80        3.24 23.3 2 

90.00 4540.84 4554.65     - 13.81    190.72 22.2 3 

120.00 6213.34 6199.42       13.92    193.77 23.7 4 

150.00 7857.62 7861.76      - 4.14      17.14 25.8 5 

       

x  = 77.50    
2

ˆy y  = 676.73 
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 (H-27) 

 

The degrees of freedom are expressed as the nearest whole number value.  For example, the 

degrees of freedom for = 24.5ccm
Rcalc

u  are computed to be 

 

 

4
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4
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The confidence limits for Rcalc can be expressed as  

 

 / 2, Rcalc
calcR t u     (H-28) 

 

where / 2,t   is the Student’s t-statistic.  For a 95% confidence level, t0.0025,2 = 4.3027 and the 

confidence limits for Rcal = 2933.01 ccm are computed to be 

 

2933.01ccm 4.3027 24.5ccm    

or  

2933.01ccm 105.31ccm  

 

The above confidence limits can also be expressed as a percentage of the full scale (FS) output of 

the rotameter. 

 

105.31ccm
2933.01ccm 100%

7861.76ccm
   

or 

2933.01ccm 1.34%  

 

The computed uncertainties, degrees of freedom and 95% confidence limits for calculated rates 

at six rotameter readings are listed in Table H-5.  The manufacturer specified accuracy of the 

Series 1110 rotameter is  2% FS.101  The 95% confidence limits computed for the UUT 

rotameter fall within the accuracy specifications.  

 

                                                 
101 Design Specifications DS-1110-1140 for 1110 and 1140 Series Glass Tube Full-View Flowmeters, Brooks Instruments, 

January 1998.   
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Table H-5.  Uncertainties for Calculated Flow Rates 

Rotameter  

Scale 

Reading 

x 

Calculated 

Flow Rate 

Rcalc 

(ccm) 

 Corrected 

Flow Rate 

Uncert. 

Rcorr
u  

(ccm) 

Regression 

Uncert.   

reg
u   

(ccm) 

Calculated 

Flow Rate  

Uncert. 

Rcalc
u   

(ccm) 

Degrees  

of  

Freedom  

Rcalc

u
  

Student’s 

t-statistic 

/ 2,t   

 

 

95%  

Conf. 

Limits 

(ccm) 

95%  

Conf. 

Limits 

(% FS) 

15.00  556.06 1.40 25.0 25.0 2 4.3027  107.74  1.37 

30.00 1340.05 3.47 22.1 22.4 2 4.3027   96.25  1.22 

60.00 2933.01 7.49 23.3 24.5 2 4.3027  105.31  1.34 

90.00 4554.65 11.62 22.2 25.1 3 3.1824   79.74  1.01 

120.00 6199.42 15.90 23.7 28.5 4 2.7765   79.24  1.01 

150.00 7861.76 20.11 25.8 32.7 5 2.5706   84.09  1.07 
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APPENDIX I – WINGBOOM AOA ANALYSIS EXAMPLE 
 

The purpose of this analysis is to estimate the overall uncertainty in an aircraft wingboom angle 

of attack (AOA) measurement.  The wingboom AOA measurement uncertainty is estimated 

using the system analysis procedure discussed in Chapter 7.   

 

I.1 Measurement Process Overview 

A BEI Model 1201 5k Ohm potentiometer, with a maximum rotational travel of 354, is the 

primary sensor used to measure the wingboom AOA.  The potentiometer output voltage is run 

through a SCD-108S signal conditioning card manufactured by Teletronics Technology 

Corporation (TTC).  The signal conditioning card consists of an 8-channel multiplexer, 

amplifier, low-pass filter, and analog to digital converter (ADC). 

 

The ADC uses 12-bit precision to convert the continuous voltage signal to a binary code.  

Therefore, the output signal from the ADC is a quantized value ranging from 0 to 4095 counts 

(i.e., 212 - 1).102  The ADC counts output is converted back to a wingboom angle using a linear 

equation obtained from a regression fit of calibration data.   

 

The wingboom AOA measurement system is calibrated from - 45 to + 45 using an  

E-2C 535 Boom Universal Calibrator Fixture.  The calibrator fixture is, in turn, calibrated 

according to the LIST-A020 procedure.103  The wingboom AOA calibration data104 are listed in 

Table I-1.   

 

Table I-1.  Wingboom AOA Calibration Data 

Meas. 

Number 

ADC 

Counts 

Applied 

Angle 

Meas. 

Number 

ADC 

Counts 

Applied 

Angle 

1 2052 0.875 18 2714 15.875 

2 1878 -4.125 19 2931 20.875 

3 1630 -9.125 20 3144 25.875 

4 1378 -14.125 21 3361 30.875 

5 1142 -19.125 22 3575 35.875 

6 716 -29.125 23 3789 40.875 

7 289 -39.125 24 4002 45.875 

8 76 -44.125 25 3788 40.875 

9 289 -39.125 26 3575 35.875 

10 717 -29.125 27 3361 30.875 

11 1142 -19.125 28 3144 25.875 

12 1378 -14.125 29 2929 20.875 

13 1629 -9.125 30 2712 15.875 

14 1878 -4.125 31 2494 10.875 

15 2052 0.875 32 2274 5.875 

16 2273 5.875 33 2053 0.875 

17 2496 10.875    

                                                 
102 Email from Kenneth Miller, CIV NAVAIR to Dr. Howard Castrup, Integrated Sciences Group, Sent: 7/13/04  Subject: LSBF 

Coefficient Significant Digits. 

103 Naval Air Test Center Technical Manual, Local Calibration Procedure LIST-A020, 1 November 2003. 

104 Calibration Data Sheet, C-2A, 162142 NP2000, TMATS File: H:\projects\C2 NP2000\C2np2k07.tma 
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A regression analysis was conducted to obtain an unweighted least squares best fit (LSBF) to a 

straight line, as shown in Figure I-1.   

 

 

Figure I-1.  Straight Line Fit of Calibration Data 

 

The straight line fit equation (I-1) is used to convert the recorded counts data to wingboom angle.  

  

  Wingboom Angle  =  0.0228  Counts - 45.83 (I-1) 

 

I.2 System Model 

The wingboom AOA measurement is made through a linear sequences of stages or modules as 

shown in Figure I-2.  The output, Y, from any given system module comprises the input of the 

next module in the series.  Since each module’s output carries with it an element of uncertainty, 

this means that this uncertainty will be present at the input of a subsequent module. 

 

 

 

Figure I-2.  Block Diagram of Wingboom AOA Measurement System 

 

I.3 System Input 

In this example, a nominal wingboom AOA of 20 will be analyzed.  The calibrator fixture is 

used to provide the wingboom AOA.  Therefore, any uncertainty in the angle established by the 
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calibrator fixture must be determined and included in this analysis.  The following error sources 

are considered relevant for the calibration fixture angle: 

 

 Bias of calibrator fixture angle 

 Measurement repeatability or random error 

 

I.3.1  Calibrator Fixture Bias   

The E-2C 535 calibrator fixture is reported to have tolerance limits of   0.25 of the angle 

established via the LIST-A020 procedure.105  For the purposes of this analysis, these limits are 

assumed to represent a 99% confidence limits for a normally distributed error.   

 

I.3.2   Measurement Repeatability   

Repeatability or random error results from variations that are manifested through repeat  

wingboom AOA measurements over a short time period.   Repeatability uncertainty can have 

units of the potentiometer output or signal conditioner output depending on the calibration 

procedure used.  As seen from the calibration data listed in Table I-1, the LIST-A020 procedure 

calibrates the potentiometer and signal conditioner as a combined unit.  Therefore, repeatability 

should be evaluated as an error source in the signal conditioning module (M2). 

 

I.4 System Modules 

The following subsections describe the measurement system modules in detail, identifying error 

sources and defining appropriate module output equations.  Manufacturer specifications will be 

used to establish error limits.  Manufacturer specification documents, as well as other reference 

materials used in this analysis, are listed in the footnotes. 

 

I.4.1 Potentiometer Module (M1)   

The first module consists of the Model 1201 5k Ohm potentiometer manufactured by BEI 

Technologies, Inc.  Potentiometers are essentially a resistor, RP, connected to a voltage source, 

VI, with a moving contact or wiper.106  The resistor is “divided” at the point of wiper contact and 

the voltage output signal, VO, is proportional to the voltage drop across the resulting load 

resistance, RL, as shown in Figure I-3a.  

 

 

 

Figure I-3.  a. Potentiometer Circuit       b. Ideal Linear Response Characteristic 

                                                 
105 Naval Air Test Center Technical Manual, Local Calibration Procedure LIST-A020, 1 November 2003. 

106 Measurement, Instrumentation, and Sensors Handbook, CRCnetBase 1999, John G. Webster Editor-in Chief. 
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Potentiometers are commonly designed to generate a DC voltage output that is linearly 

proportional to rotational or lateral displacement X/Xp, as shown in Figure I-3b.  The 

potentiometer voltage output is then expressed as 

 

  o I
P

X
V V K

X
     (I-2) 

 

where K is the potentiometer sensitivity, X is the input angle in degrees and Xp is the maximum 

angle that the potentiometer can travel.    
 

When developing an uncertainty analysis for the potentiometer module, the impact that errors in 

VI, K, X and Xp will have on the output value must considered.  In addition, manufacturer 

specifications for the Model 1201 5k Ohm potentiometer107 indicate that there are other error 

sources that affect the potentiometer output.  The following error sources are applicable to the 

output of the potentiometer module: 
 

 Calibrator Fixture Angle 

 Supply Voltage 

 Maximum Angle 

 Sensitivity 

 Linearity 

 Resistance 

 Noise 

 Resolution 

 Temperature Coefficient  
 

I.4.1.1  Calibrator Fixture Angle (X)   

As previously discussed, a nominal angle of 20  is applied by the calibrator fixture.  The 

calibrator fixture is reported to have tolerance limits of   0.25 of the applied angle.  These 

limits are assumed to represent a 99% confidence limits for a normally distributed error.   
 

I.4.1.2 Supply Voltage (
IV )  

Since the potentiometer is a passive sensor, the signal conditioner must provide a regulated DC 

voltage or current via a precision power supply.  The SCD-108S signal conditioner supplies an  

external excitation voltage of 5 V to the potentiometer.  The excitation voltage accuracy is stated 

to be   0.3% maximum.  In this analysis these limits are assumed to represent 95% confidence 

limits for a normally distributed error.  

 

I.4.1.3 Maximum Angle (
PX )   

The specification sheet for the BEI Model 1201 potentiometer indicates a maximum or actual 

electrical travel of 354  2.  We interpret the  2 limits to represent 95% confidence limits for 

a normally distributed error.    

                                                 
107 Specification sheet for BEI Model 1201 Servo Mount Wirewound Single-turn Precision Potentiometer, www.beiduncan.com. 
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I.4.1.4  Sensitivity (K)   

The potentiometer sensitivity is the dimensionless slope of the linear response curve shown in 

Figure I-3b.  Ideally, the potentiometer sensitivity should have a value of unity.  However, 

variation in potentiometer sensitivity can occur due to temperature effects, drift, hysteresis or 

other factors. 

 

I.4.1.4.1 Linearity (L)   

Linearity, or more appropriately non-linearity, is a measure of the deviation of the actual input-

to-output performance of the device from an ideal linear relationship.  Linearity error is fixed at 

any given input, but varies with magnitude and sign over a range of inputs.  Therefore, it is 

considered to be a normally distributed error. 

 

The specification sheet for the BEI Model 1201 indicates linearity tolerance limits of  0.5% of 

full scale (FS) for standard conditions and  0.2% FS for best practical conditions.  The  0.5% 

FS limits are used in this analysis and are be assumed to represent 95% confidence limits for a 

normally distributed error. 

 

I.4.1.4.2  Resistance (R)  

Total resistance is a key parameter because it determines the amount of current drawn for a given 

applied voltage.  Because potentiometer resistance can change over time between calibrations, it 

is important to estimate how resistance error impacts overall uncertainty.   

 

Manufacturer specifications indicate that the resistance tolerance limits for the BEI Model 1201 

are  3% FS for standard conditions and  1% FS for best practical conditions.  The  3% FS 

limits are used in this analysis and are assumed to represent 95% confidence limits for a 

normally distributed error. 

 

I.4.1.4.3  Noise (N)  

Non-repeatability or random error intrinsic to the device, that causes the output to vary from 

observation to observation for a constant input, is usually specified as noise.   

 

Manufacturer specifications indicate that the equivalent noise resistance (ENR) has a maximum 

value of 100 Ohms.  Potentiometer noise, in relation to the total potentiometer resistance of 

5,000 Ohms, can be expressed as  2% of FS.  In this analysis, the  2% of FS limits are 

assumed to represent 95% confidence limits for a normally distributed error.   

 

I.4.1.4.4  Resolution (res)  

Resolution defines the smallest possible increment of voltage change that can be produced and 

detected.  In wire-wound coil potentiometers, resolution is the voltage drop in one turn of 

resistance wire.  The best attainable resolution is 1/N   100% of full scale voltage or resistance, 

where N is the number of turns in the coil.  Resolution can also be expressed in terms of travel in 

inches or degrees. 

 

The specification sheet for the BEI Model 1201 contains a footnote that indicates that Resolution 

Tables are available by model number and resistance value.  The manufacturer was contacted 
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and they indicated resolution limits of  0.11% FS.  These limits are assumed to represent 100% 

confidence limits for a uniformly distributed error. 

 

I.4.1.4.5  Temperature Coefficient (TC)  

Resistance increases with temperature.  Therefore, the potentiometer sensitivity will be affected 

by temperature variation.  However, this may not be a major concern as long as the changes in 

resistance are uniform and the potentiometer is operated within its rated temperature range.  In 

general, wire-wound potentiometers have very low temperature coefficients.  

 

The temperature coefficient tolerance limits specified for the BEI Model 1201 are  0.007%/C. 

These limits are assumed to represent 95% confidence limits for a normally distributed error. 

 

A temperature range of 50C with associated error limits of  2 C are used in this analysis.  The 

 2 C limits are assumed to represent 95% confidence limits for a normally distributed error. 

 

I.4.1.4.6 Potentiometer Output Equation   

The output equation for the potentiometer module is expressed in equation (I-3).  Table I-2 

contains the relevant information for the equation parameters. 

 

    
I

P

out o

X
I V K

X
out P o V

P

X
P V V K

X


   




     


 (I-3) 

where 
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L R N res TC TC T
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      

      





       

       
 (I-4) 

 

and T  and T  are the temperature range and corresponding error, respectively. 

 

Table I-2.  Parameters used in Potentiometer Module Equation 

Equation  

Parameter Description 

Nominal or 

Mean Value 

Error  

Limits 

Percent 

Confidence 

Error 

Distribution 

VI Supply Voltage 5 V    

IV  Supply Voltage Error 0 V  15 mV 95 Normal 

X Calibrator Fixture Angle 20    

X Fixture Angle Error 0  0.25 99 Normal 

XP Maximum Angle 354    

PX  Max. Angle Error 0  2 95 Normal 

K Potentiometer Sensitivity 1.0    

L Sensitivity Linearity 0  0.005 95 Normal 

R Resistance Error 0  0.03 95 Normal 

N Noise 0  0.02 95 Normal 

res Resolution Error 0  0.0011 100 Uniform 

TC Temperature Coefficient 0  0. 7e-4/C 95 Normal 

T Temperature Range 50 C    
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T Temperature error 0 C  2 C 95 Normal 

 

I.4.2 Signal Conditioner Module (M2)   

The voltage signal entering the SCD-108S signal conditioning card is converted to a quantized 

value ranging from 0 to 4095 counts (i.e., 212-1).  The manufacturer specifications for the SCD-

108S signal conditioning card108 state an accuracy of  0.5%.  As previously discussed in Section 

I.3.2, repeatability or random error must also be considered in the analysis of the signal 

conditioner module.   

 

The following error sources are applicable to the output of the signal conditioner module: 

 

 Signal conditioner bias 

 Quantization error 

 Measurement repeatability 

 

I.4.2.1  Signal Conditioner Bias (
bSC ) 

TTC, the manufacturer of the SCD-108S, was contacted to obtain clarification regarding the 

accuracy specification limits.  TTC stated the accuracy limits are a percent full scale output and 

that the associated confidence level is 99%.  The full scale output of the SCD-108S is 4095 

counts.  Therefore, the accuracy limits are  20.475 counts.  In this analysis, the signal 

conditioner bias is assumed to be normally distributed.      

 

I.4.2.2  Quantization Error (
qSC ) 

During quantization, a finite number is used to represent a continuous value.  The resulting 

resolution limit from the quantization of a 5 V signal using a 12-bit ADC is 5 V/(212) or  1.2 mV.  

The quantization error limits are half the resolution or   0.6 mV and represent 100% 

containment (i.e., confidence) limits for a uniformly distributed error. 

 

I.4.2.3  Measurement Repeatability ( rep ) 

The LIST-A020 procedure only allows for the collection of two repeat measurements at 

calibration fixture angle.  Therefore, there are insufficient data to evaluate the effects of 

measurement repeatability. 

 

I.4.2.4 Signal Conditioner Output Equation   

The 0 to 4095 counts output range of the SCD-108S corresponds to the positive and negative 

voltages for angles ranging from - 45 to + 45.  The conversion from volts to counts is equal to 

4095 counts/90  354/5V or 3221.4 counts/V.  An angle of 0corresponds to signal conditioner 

output of  211 or 2048 counts.   

 

The output equation for the signal conditioner module is expressed in equation (I-5).  Table I-3 

contains relevant information for the equation parameters. 

 

                                                 
108 SCD-108S Signal Conditioning Card Specifications, www.ttcdas.com. 
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   1 2out q bout out P SC SCSC P C C         (I-5) 

 

where 

 
20

5V 1 0.282 V
354

out I
P

X
P V K

X


      


 

Table I-3.  Parameters used in Signal Conditioner Module Equation 

Parameter 

Name Description 

Nominal or  

Mean Value 

Error  

Limits 

Percent 

Conf. 

Error 

Distribution 

Pout 
Potentiometer 

Output 
0.282 V    

outP  Potentiometer 

Output Error 
0 V    

bSC  Signal Conditioner 

Bias 
0 V  20.475 Counts 99 Normal 

qSC  Quantization Error 0 V  0.6 mV 100 Uniform 

C1 Conversion Coeff. 3,221.4 Counts/V    

C2 Conversion Coeff. 2048 Counts    

 

I.4.3 Data Processor Module (M3)   

The data processing module takes the quantized ADC output and computes a wingboom angle 

using the linear regression equation (I-1) obtained from calibration data.  Errors associated with 

data processing result from computation round-off or truncation and from residual differences 

between values observed during calibration and values estimated from the regression equation. 

Regression error is the primary error source for the data processor module.  

 

I.4.3.1  Regression Error ( ) 

A linear regression equation is typically expressed as 

 

 0ŷ b bx   (I-6) 

 

where ŷ  is the predicted value for a given x, b0 is the value of y when x equals zero, and b 

represents the amount of change in y with x. 

 

In regression analysis, the standard error of estimate is a measure of the difference between 

actual values and values estimated from a regression equation.109  The standard error  

of estimate is also defined as the standard deviation of the normal distributions of y  for any 

given x. 

 

I.4.3.1.1 Standard Error of Estimate   

A regression analysis that has a small standard error of estimate has data points that are very 

close to the regression line.  Conversely, a large standard error of estimate results when data 

points are widely dispersed around the regression line.  The standard error of estimate is 

computed using equation (I-7). 

                                                 
109 Hanke, J. et al.: Statistical Decision Models for Management, Allyn and Bacon, Inc. 1984. 

reg
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The calibration data listed in Table I-1 and the linear regression equation (I-1) were entered into 

a spreadsheet and the standard error of estimate was computed to be equal to 0.40. 

 

I.4.3.1.2 Standard Error of Forecast  

As previously stated, the standard error of estimate is a measurement of the typical vertical 

distance of the sample data points from the regression line.  However, we must also consider the 

fact that the regression line was generated from a finite data sample.  If another data sample was 

collected, then a different regression line would result.  Therefore, we must also consider the 

dispersion of various regression lines that would be generated from multiple sample sets around 

the true population regression line. 

 

The standard error of the forecast accounts for the dispersion of the regression lines and is 

computed using equation (I-8). 
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 (I-8) 

 

where x  is the average or mean of the x values. 

 

The standard error of forecast is computed for each value of x.  The wingboom AOA of 20 used 

in this analysis corresponds to a value of 2930 counts, so sf has a value of 0.408.  The 

uncertainty due to regression error is equal to sf . 

 

I.4.3.2 Data Processor Output Equation   

The output equation for the data processing module is expressed in equation (I-9).  Table I-4 

contains relevant information for the equation parameters. 

 

   3 4outout out SC regDP SC C C       (I-9) 

where 

 

1 2

0.282 V 3, 221.4Counts/V 2048Counts

= 908.4Counts 2048Counts

= 2,956.4Counts

out outSC P C C  

  


  

 

Table I-4.  Parameters used in Data Processor Module Equation 

Parameter 

Name Description 

Nominal or 

Mean Value 

Standard 

Uncertainty 

Percent 

Confid. 

Error 

Distribution 

SCout Signal Conditioner Output 2,956.4 Counts    

outSC  Signal Conditioner  

Output Error 
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C3 Regression Line Slope 0.0228/Count    

C4 Regression Line Intercept - 45.83    

reg  Regression Error 0 0.408   

 

I.5 Module Error Models 

The next step is to develop an error model for each module.  Equations (I-3) through (I-5) and  

(I-9) provide the basis for the development of the module error models. 

 

I.5.1 Potentiometer Module (M1) 

The error model for the potentiometer module is expressed as 
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where 
IVc , Kc , Xc , 

PXc  and Tc  are sensitivity coefficients that determine the relative 

contribution of the error sources to the error in the potentiometer output.  The partial derivative 

equations used to compute the sensitivity coefficients are listed below. 

 

I

out
V

I P

P X
c K

V X


  


 out
K I

P

P X
c V

K X


  


 out I

X
P

P V K
c

X X

 
 


 

 

2P

out I
X

P P

P V K X
c

X X

  
  


 out out
T I

P

P P K X
c V T

T K T X


  
     
  

 

 

I.5.2   Signal Conditioner Module 

The error model for the signal conditioner module is expressed as 

 

  out out out q b bSC P P SC SC SCc c       (I-11) 

 

where 
outPc  and 

bSCc  are sensitivity coefficients that determine the relative contribution of the 

error sources to the error in the signal conditioner output.  The partial derivative equations used 

to compute the sensitivity coefficients are listed below. 
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I.5.3   Data Processor Module 

The error model for the data processor module is expressed as 

 

 
out out outDP SC SC reg regc c     (I-12) 
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where 
outSCc  and regc  are sensitivity coefficients that determine the relative contribution of the 

error sources to the error in the data processor output.  The partial derivative equations used to 

compute the sensitivity coefficients are listed below. 
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I.6 Module Uncertainty Models 

The next step in the analysis procedure is to develop an uncertainty model for each module, 

accounting for possible correlations between error sources. 

 

I.6.1   Potentiometer Module 

The uncertainty model for the potentiometer module output is developed by applying the 

variance operator to equation (I-10). 
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 (I-13) 

 

There are no correlations between error sources for the potentiometer module.  Therefore, the 

uncertainty in the potentiometer output can be expressed as 
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I.6.2   Signal Conditioner Module 

The uncertainty model for the signal conditioner module output is developed by applying the 

variance operator to equation (I-11). 
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There are no correlations between error sources for the signal conditioner module.  Therefore, 

the uncertainty in the signal conditioner output can be expressed as 
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I.6.3   Data Processor Module 

The uncertainty model for the signal conditioner module output is developed by applying the 

variance operator to equation (I-12). 

 

 
 

 

var

var

DP outout

out out

DP

SC SC reg reg

u

c c

 

 



 

 (I-17) 

 

There are no correlations between error sources for the data processor module.  Therefore, the 

uncertainty in the data processor output can be expressed as 

   

 2 2 2 2
DPout out SC regout

regSC
u c u c u  

   (I-18) 

 

I.7  Estimate Module Uncertainties 

The next step in the system analysis is to estimate uncertainties for the error sources identified 

for each module and to use these estimates to compute the combined uncertainty and associated 

degrees of freedom for each module output. 

 

I.7.1  Potentiometer Module 

As discussed in section I.4.1, with the exception of resolution error, the error sources identified 

for the potentiometer module are assumed to follow a normal distribution.  Therefore, the 

corresponding uncertainties can be estimated from the error limits,  L, confidence level, p, and 

the inverse normal distribution function, (.), as discussed in Chapter 3. 
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For example, the uncertainty due to the supply voltage error is estimated to be 
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The resolution error follows a uniform distribution, so resolution uncertainty is estimated to be 

 

0.0011 0.0011
0.000635.

1.7323res
u     

 

The estimated uncertainties for each potentiometer error source are summarized in Table I-5.   

The component uncertainty for each error source is the positive product of the standard 

uncertainty and the sensitivity coefficient.  The uncertainty in the potentiometer output  is 

computed by taking the root sum square of the component uncertainties.  
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Table I-5.  Uncertainty Analysis Results for Potentiometer Module 

Error 

Source 
 Error  

Limits 

Error 

Distribution 

Confidence 

Level (%) 

Standard 

Uncertainty 

Sensitivity 

Coefficient 

Component 

Uncertainty  

IV  0.015 V Normal 95 0.00765 V 0.0565 0.0004 V 

X 0.25 Normal 99 0.0971 0.01412 V/ 0.0014 V 

PX  2 Normal 95 1.02 -0.0008 V/ 0.0008 V 

L 0.005 Normal 95 0.0026 0.282 0.00072 V 

R 0.03 Normal 95 0.0153 0.282 0.0043 V 

N 0.02 Normal 95 0.0102 0.282 0.0029 V 

res 0.0011 Uniform 100 0.000635 0.282 0.00018 V 

TC 7e-5 /C Normal 95 3.57e-5 /C 14.1 VC 0.0005V 

Module 

Output 
0.282 V    

Output 

Uncertainty 
0.0055 V 

 

The pareto chart, shown in Figure I-4, indicates that uncertainties due to resistance error and 

noise are the largest contributors to the uncertainty in the potentiometer output.  

 

 

Figure I-4.  Pareto Chart for Potentiometer Module 

 

I.7.2  Signal Conditioner Module 

As discussed in Section I.4.2, the signal conditioner bias is assumed to follow a normal 

distribution.  Therefore, the bias uncertainty is estimated to be 
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The quantization error follows a uniform distribution, so the associated uncertainty is estimated 

to be 
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0.0006 V 0.0006 V
0.000346 V.

1.7323SCq
u     

 

The estimated uncertainties for the signal conditioner error sources are summarized in Table I-6.   

The uncertainty in the signal conditioner output is computed by taking the root sum square of the 

component uncertainties.  

 

Table I-6.  Uncertainty Analysis Results for Signal Conditioner Module 

Error 

Source 
 Error  

Limits 

Error 

Distribution 

Confidence 

Level (%) 

Standard 

Uncertainty 

Sensitivity 

Coefficient 

Component 

Uncertainty  

outP     0.0055 V 3221.4 Counts/V 17.72 Counts 

qSC  0.0006 V Uniform 100 0.000346 V 3221.4 Counts/V 1.12 Counts 

bSC  20.475 Counts Normal 99 7.95 Counts 1 7.95 Counts 

Module 

Output 

2958.0 

Counts 

 
  

Output 

Uncertainty 
19.45 Counts 

 

The pareto chart, shown in Figure I-5, indicates that the potentiometer output uncertainty is the 

largest contributor to the uncertainty in the signal conditioner output.  

 

 

Figure I-5.  Pareto Chart for Signal Conditioner Module 

 

I.7.3  Data Processor Module 

As discussed in Section I.4.3, the uncertainty due to regression error is equal to the standard error 

of forecast.  For a wingboom angle of 20 used in this analysis, the standard error of forecast was 

computed to be 0.408. 

 

The data processor output is  
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The estimated uncertainties for the data processor error sources are summarized in Table I-7.   

The uncertainty in the data processor output  is computed by taking the root-sum-square of the 

component uncertainties.  
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Table I-7.  Uncertainty Analysis Results for Data Processor Module 

Error 

Source 
 Error  

Limits 

% 

Confidence 

Standard 

Uncertainty 

Sensitivity 

Coefficient 

Component 

Uncertainty  

outSC    19.45 Counts 0.0228/Count 0.443 

reg    0.408 1 0.408 

Module Output 21.61   Uncertainty 0.603 

 

The pareto chart, shown in Figure I-6, indicates that the signal conditioner output uncertainty and 

regression error uncertainty contribute almost equally to the data processor output uncertainty.  

 

 

Figure I-6.  Pareto Chart for Data Processor Module 

 

I.8 System Output and Uncertainty 

In the system analysis approach, each module is analyzed separately and the output and 

associated uncertainties for each module are propagated to subsequent modules.  In the 

evaluation of the wingboom AOA measurement system modules, it has been illustrated how the 

uncertainty in the output of one module propagates through to the next module in the series.  The 

module outputs and uncertainties for the wingboom AOA measurement system are summarized 

in Table I-8. 

 

Table I-8.  Summary of Wingboom AOA Measurement System Analysis Results  

Module 

Name 

Module  

Input 

Module Output Standard 

Uncertainty 

Degrees of 

Freedom 

Potentiometer 20  0.282 V 0.0055 V  

Signal Conditioner 0.282 V 2958.0 Counts 19.45 Counts  

Data Processor 2958.0 Counts 21.6 0.60  

 

The system output and uncertainty are equal to the values computed for the last module in the 

series.  Therefore, the wingboom AOA measurement system has an output of 21.6 with an 

uncertainty of 0.60.   
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